期刊文献+

Smarandache LCM函数与其对偶函数的混合均值 被引量:10

Hybrid Mean Value Problem of the Smarandache LCM Function and Its Dual Function
下载PDF
导出
摘要 研究Smarandache LCM函数SL(n)与其对偶函数的混合均值问题,并利用初等方法和组合方法给出一个有趣的混合均值公式.结果显示,SL(n)函数的值与其对偶函数的值几乎处处不同. In this paper,a hybrid mean value problem involving the Smarandache LCM function SL(n) and its dual function were studied, and an interesting hybrid mean value formula was given by using the elementary and combination methods. This shows that the value of SL(n) are almost not equal to its dual function.
作者 闫晓霞
出处 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2010年第3期229-231,共3页 Journal of Inner Mongolia Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(10671155)
关键词 SMARANDACHE LCM函数 对偶函数 混合均值 渐近公式 Smarandache LCM function dual function hybrid mean value asymptotic formula
  • 相关文献

参考文献11

  • 1张文鹏.关于F.Smarandache函数的两个问题[J].西北大学学报(自然科学版),2008,38(2):173-176. 被引量:63
  • 2Chen Jianbin.Value distribution of the F.Smarandache LCM function[J].Scientia Magna.2007,3(2):15-18.
  • 3Murthy A.Some notions on least common multipies[J].Smarandache Notions Journal.2001.12:307-309.
  • 4LE Mao-hua.Two function equations[J].Smarandache Notions Journal.2004.14:180-182.
  • 5赵院娥.关于Smarandache LCM函数的一类均方差问题[J].纯粹数学与应用数学,2008,24(1):71-74. 被引量:14
  • 6Lu Zhongtian.On the F.Smarandache LCM function and its mean value[J].Scientia Magna.2007.3(1):22-25.
  • 7Ge Jian.Mean value of the F.Smarandache LCM function[J].Scientia Magna.2007.3(2):109-112.
  • 8Apostol T M.Introduction to Analytic Number Theory[M].New York:Springer-Verlag.1976.
  • 9Kenichiro Kashihara.Comments and topics on Smarandache notions and problems[M].Erhus University Press.USA.1996.
  • 10潘承洞 潘承彪.初等数论[M].北京:北京大学出版社,2001..

二级参考文献11

  • 1乐茂华.关于Smarandache LCM函数的一个方程[J].西安工程科技学院学报,2004,18(3):263-264. 被引量:31
  • 2徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 3吕国亮.关于F.Smarandache LCM函数与除数函数的一个混合均值[J].纯粹数学与应用数学,2007,23(3):315-318. 被引量:13
  • 4SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 5WANG Yong-xing.On the Smarandache function[J].Re-search on Smarandache Problem in Number Theory,2005,2:103-106.
  • 6LU Ya-ming.On the solutions of an equation involving the Smarandarche function[J].Seientia Magna,2006,2(1):76-79.
  • 7SANDOR J.On a dual of the Pscudo-Smarandache func-tion[J].Smarandache Notions (Book Series),2002,13:16-23.
  • 8LE Mao-hua.TWo function equations[J].Smarandache Notions Journal,2004,14:180-182.
  • 9COP,SKI D.The pseudo-Smarandache functions[J].Sma-randache Notions J,2000,12:140-145.
  • 10SANDOR J.On additive analogues of certain arithmetic function[J].Smarandache Notions J,2004,14:128-132.

共引文献79

同被引文献61

  • 1乐茂华.关于Smarandache LCM函数的一个方程[J].西安工程科技学院学报,2004,18(3):263-264. 被引量:31
  • 2冀永强.数论函数及其方程[J].纺织高校基础科学学报,2006,19(1):5-6. 被引量:7
  • 3刘燕妮,李玲,刘宝利.Smarandache未解决的问题及其新进展[M].High American Press,2008,12—13.
  • 4潘承洞,潘承彪.素数定理的证明[M].上海:上海科学技术出版社,1988.
  • 5Florentin Smarandache.Only problems.not Solutions[M].Chicago:Xiqu Publishing House,1993.
  • 6Jozsef Sandor.On additive analogue of certain arithmetic function[J].Smarandache Notions Journal.2004,14:128-132.
  • 7Maohua Le.Some Problems Concerning the Smarandachr square complementary function[J].Smarandache Notions Journal.2004,14:220-222.
  • 8Zhu Minhui.The additive analogue of Smarandaehe simple function[C]//Research on Smarandache problem in number theory.USA:Hexis,2004:39-40.
  • 9Apostol T M.Introduction to Analytic Number Theory[M].New York:Springer-Verlag,1976.
  • 10Smarandache F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部