摘要
首先给出了连续参数集值下鞅的定义.继而证明了连续参数集值下鞅的三个等价定理:(a)L1wkc(X)值下鞅等价于任给τ1<τ2,τ1,τ2∈T,∫ΩFτ1dP∫ΩFτ2dP;(b)L1fc(X)值下鞅等价于任给s,t∈R+,s<t,S1Fs(Fs)cl{E(g|Fs),g∈S1Ft(Ft)};(c)X可分时,闭凸集值下鞅等价于任给s,t∈R+,s<t,A∈Fs,cl∫AFsdPcl∫AFtdP.最后给出了弱紧凸集值随机集族的弱收敛定理和X有RNP,X可分时闭凸集值右连续下鞅的弱收敛定理.
The definition of continuous parameter set valued submartingale is given.Then,three equivalent theorems of continuous parameter set valued submartingale is proved:(1)L 1 wkc (X) valued submartingale is equal to ∫ ΩF τ 1 d p∫ ΩF τ 2 d p for any τ 1,τ 2∈T and τ 1<τ 2;(2)L 1 fc (X) valued submartingale is equal to S 1 F s (F s)cl{E(g/F s);g∈S 1 F t (F t)} for any s,t∈R + and s<t;(3)When X is separable,closed convex set valued submartingale is equal to cl ∫ AF s d p cl ∫ AF t d pfor any s,t∈R + and s<t.In the end ,the weak convergence theorem of weak compact convex set valued random sets and weak convergence theorem of closed convex set valued right continuous submartingale are given.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
1999年第1期89-92,共4页
Journal of Hohai University(Natural Sciences)
基金
河海大学青年科学基金
关键词
弱紧凸集
闭凸集
连续参数
集值下鞅
收敛定理
weak compact convex set
closed convex set
continuous parameter
set valued submartingale
convergence theorem