期刊文献+

结合Camshift和Kalman预测的运动目标跟踪 被引量:13

Camshift and Kalman Predicting Based on Moving Target Tracking
下载PDF
导出
摘要 针对单一的CamShift跟踪算法在目标发生遮挡时非常容易致使跟踪目标失败的问题,本文提出了一种基于CamShift和Kalman预测的跟踪算法。首先,采用帧间差分阈值法来快速、精确地检测和提取出运动目标;然后,通过在CamShift算法中使用运动目标的颜色特征,在图像序列中找到运动目标的所在位置和大小;最后,使用Kalman滤波预测目标的位置,进而有效地解决了背景中大面积相同颜色的干扰和目标部分被遮挡等问题。用无线遥控车完成了运动目标的跟踪实验,实验证明结合CamShift算法和Kalman预测滤波能实时、准确地跟踪目标。 This paper presents a tracking algorithm based on the CamShift and Kalman prediction which was proposed to solve the poor tracking ability problem in occlusions just using single Camshift. Firstly, an inter-frame difference threshold method is used to achieve the detection and extraction of the target rapidly and accurately. Secondly, the color characteristics of moving objects in CamShift algorithm are used to find its location and size in image sequences. Finally, to deal with the object occlusion by other objects which have similar color, a Kalman filter is used to track the object region centroid. We use a wireless remote-controlled car to achieve a moving target tracking experiment. The experimental results denote that combining the Cam- Shift algorithm and the Kalman prediction filtering completes a real-time and accurate target tracking.
出处 《计算机工程与科学》 CSCD 北大核心 2010年第8期81-83,137,共4页 Computer Engineering & Science
基金 国家民委自然科学基金重点资助项目(09ZN01)
关键词 帧间差分阈值 连续自适应均值偏移 卡尔曼滤波 目标跟踪 threshold of inter frame differential(TIFD) continuously adaptive mean shift (CamShift) Kalman filtering object tracking
  • 相关文献

参考文献5

  • 1Numrniaro K, Koller-Meier E, van Gool L. Anadaptive Color-Based Particle Filter [J]. Image and Vision Computing, 2003,21(1):99-110.
  • 2Comaniciu D, Rarnesh V, Meer R. Real-Time Tacking of Nonrigid Objects Using Mean Shift[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition, 2000:142-149.
  • 3Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface[J]. Intel Technology Journal, 1998 (Q2) : 1-15.
  • 4袁霄,王丽萍.基于MeanShift算法的运动人体跟踪[J].计算机工程与科学,2008,30(4):46-49. 被引量:27
  • 5Sorenson H W. Kalman Filtering: Theory and Application ( Second Edition ) [M]. New York:IEEE Press, 2002.

二级参考文献8

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Obiects Using Mean Shift[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition, 2000:142-149.
  • 2Maggio E,Cavallaro A. Multi-Part Target Representation for Color Tracking[C]//Proc of the Int'1 Conf on Image Processing, 2005 : 729-732.
  • 3Fukanaga K, Hostetler L D. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition[J]. IEEE Trans on Information Theory, 1975, 21(1):32-40.
  • 4Cheng Y. Mean Shift, Mode Seeking and Clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995,17(8) : 790-799.
  • 5Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5) :564-575.
  • 6Hu Min, Hu Weiming,Tan Tieniu. Tracking People Through Occlusions[C]//Proc of the 17th Int'l Conf on Pattern Recognition, 2004 : 724-727.
  • 7Adam A, Rivlin E, Shimshoni I. Robust Fragments-Based Tracking Using the Integral Histogram[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition,2006 :798-805.
  • 8Collins R T, Liu Yanxi. On-Line Selection of Discriminative Tracking Features[C]//Proc of the IEEE Int'l Conf on Computer Vision, 2003 : 346-352.

共引文献26

同被引文献93

引证文献13

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部