摘要
A sheet plasma is generated by a mesh anode and a single hot-filament cathode with a DC power supply, and its characteristics are experimentally investigated. The sheet plasma is observed to locate around the anode. Both electron density and electron temperature derived from the average energy of the energetic electrons in nitrogen are estimated to be 10s cm^-3 and 20- 40 eV, respectively, using the optical emission spectroscopy (OES) method based on a kinetic model of low-pressure nitrogen discharge. The electron density, electron temperature and their spatial distributions are found to be affected by the supplying voltage on the anode(70 V to 300 V), filament temperature (600℃ to 780℃) and gas pressure (2 Pa to 20 Pa). By adjusting these parameters the discharge status can be easily controlled.
A sheet plasma is generated by a mesh anode and a single hot-filament cathode with a DC power supply, and its characteristics are experimentally investigated. The sheet plasma is observed to locate around the anode. Both electron density and electron temperature derived from the average energy of the energetic electrons in nitrogen are estimated to be 10s cm^-3 and 20- 40 eV, respectively, using the optical emission spectroscopy (OES) method based on a kinetic model of low-pressure nitrogen discharge. The electron density, electron temperature and their spatial distributions are found to be affected by the supplying voltage on the anode(70 V to 300 V), filament temperature (600℃ to 780℃) and gas pressure (2 Pa to 20 Pa). By adjusting these parameters the discharge status can be easily controlled.
基金
supported by National Defence Research Foundation of China (No.A1420060181)