摘要
液相色谱-质谱(LC-MS)联用是当今规模化蛋白质鉴定的主流技术。肽段在反相液相色谱(RPLC)中的保留时间主要是由肽段的理化性质和LC条件(固定相、流动相)决定的。可以通过分析肽段的理化性质,并量化它们对肽段色谱行为的影响来预测保留时间。预测结果可以用于帮助提高蛋白质鉴定的数量和可信度,也可用于肽段的翻译后修饰等研究。现在已有的保留时间预测算法主要有保留系数法和机器学习法两大类,得到的预测保留时间与实际保留时间相关系数可达到0.93。随着色谱和质谱技术的不断发展,肽段色谱行为的稳定性和重现性越来越好,保留时间预测结果也越来越准确。预测肽段保留时间将成为提高蛋白质鉴定结果的重要技术手段之一。
Liquid chromatography-mass spectrometry(LC-MS) is the mainstream of high-throughput protein identification technology.Peptide retention time in reversed-phase liquid chromatography(RPLC) is mainly determined by the physicochemical properties of the peptide and the LC conditions(stationary phase and mobile phase).Retention time can be predicted by analyzing these properties and quantifying their effects on peptide chromatographic behavior.Prediction of peptide retention time in LC can be used to improve identification of peptides and post translational modifications(PTM).There are mainly two methods to predict retention time: i.e.retention coefficients and machine learning.The coefficient of determination between observed and predicted retention times can reach 0.93.With the development of LC-MS technology,retention time prediction will become an important tool to facilitate protein identification.
出处
《色谱》
CAS
CSCD
北大核心
2010年第6期529-534,共6页
Chinese Journal of Chromatography
基金
国家"863"计划项目(No.2008AA02Z309和No.2007AA02Z315)
国家"973"计划项目(No.2010CB912701)
中国科学院知识创新计划项目(No.KGGX1-YW-13)
关键词
反相液相色谱-质谱联用
保留系数
机器学习
保留时间
预测
蛋白质
肽
鉴定
reversed-phase liquid chromatography-mass spectrometry(RPLC-MS)
retention coefficient
machine learning
retention time
prediction
protein
peptide
identification