摘要
Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.
Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.
基金
Supported by the Fundamental Research Funds for the Central Universities (Grant No. 1082001)
National Natural Science Foundation of China (Grant No. 10571044)