期刊文献+

Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry

Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry
原文传递
导出
摘要 Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry. Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.
作者 Qiao Hua YANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1575-1590,共16页 数学学报(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities (Grant No. 1082001) National Natural Science Foundation of China (Grant No. 10571044)
关键词 Heisenberg type groups Yamabe equations simple Lie group of real rank one Heisenberg type groups, Yamabe equations, simple Lie group of real rank one
  • 相关文献

二级参考文献12

  • 1Juha Heinonen,Ilkka Holopainen.Quasiregular maps on Carnot groups[J].The Journal of Geometric Analysis.1997(1)
  • 2Giorgio Talenti.Best constant in Sobolev inequality[J].Annali di Matematica Pura ed Applicata Series.1976(1)
  • 3Moser J.A sharp form of an inequality by N. Trudinger[].Indiana University Mathematics Journal.1971
  • 4Folland GB.A fundamental solution for a subelliptic operator[].Bulletin of the American Mathematical Society.1973
  • 5Kaplan A.Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms[].Transactions of the American Mathematical Society.1980
  • 6N S Trudinger.On Imbedding into Orlicz Spaces and Some Applications[].Journal of Mathematics and Mechanics.1967
  • 7Lieb EH.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[].Annals of Mathematics.1983
  • 8.
  • 9O’Neil R.Convolution operators and L(p,q) spaces[].Duke Mathematical Journal.1963
  • 10Carlen,E.,Loss,M.Extremals of functionals with competing symmetries[].Journal of Functional Analysis.1990

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部