摘要
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.
基金
supported by the Key Project of Chinese Ministry of Education(108037)
the National Natural Science Foundation of China(10402008 and 50535010)