期刊文献+

Some Remarks for the Relationships between the Generalized Bernoulli and Euler Polynomials 被引量:1

Some Remarks for the Relationships between the Generalized Bernoulli and Euler Polynomials
下载PDF
导出
摘要 In this paper,we prove the Srivastava-Pint'er's addition theorems(see Applied Mathematic Lett.17(2004),375-380) by applying the another methods.We also provide some analoges of these addition theorems and deduce the corresponding special cases.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2010年第1期16-22,共7页 数学季刊(英文版)
基金 Supported by the PCSIRT of Education of China(IRT0621) Supported by the Innovation Program of Shanghai Municipal Education Committee of China(08ZZ24) Supported by the Henan Innovation Project for University Prominent Research Talents of China(2007KYCX0021)
  • 相关文献

参考文献12

  • 1MAGNUS W,OBERHETTINGER F,SONI R P.Formulas and Theorems for the Special Functions of Mathematical Physics,Third Enlarged Edition[M].New York:Springer-Verlag,1966.
  • 2SRIVASTAVA H M,CHOI J.Series Associated with the Zeta and Related Functions[M].Boston and London:Kluwer Academic Publishers,2001.
  • 3SRIVASTAVA H M,PINT(E)R (A).Remarks on some relationships between the Bernoulli and Euler polyno-mials[J].Appl Math Lett,2004,17:375-380.
  • 4CHEON G S.A note on the Bernoulli and Euler polynomials[J].Appl Math Lett,2003,16(3):365-368.
  • 5ABRAMOWITZ M,STEGUN I A.Handbook of Mathematical Functions with Formulas Graphs and Math-ematical Tables[M].Washington:National Bureau of Standards,1964.
  • 6LUO Qiu-ming,SRIVASTAVA H M.Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials[J].Comput Math Appl,2006,51:631-642.
  • 7LUO Qiu-ming.Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions[J].Tai-wanese J Math,2006,10(4):917-925.
  • 8LUO Qiu-ming.An explicit formula for the Euler polynomials[J].Integral Transforms Spec Funct,2006,17(6):451-454.
  • 9LUO Qiu-ming,SRIVASTAVA H M.Some generalizations of the Apostol-Bernoulli and Apostol-Euler poly-nomials[J].J Math Anal Appl,2005,308:290-302.
  • 10LUO Qiu-ming.Some recursion formulas and relations for Bernoulli numbers of higher order and Euler numbers of higher order[J].Adv Stud Contemp Math,2005,10(1):63-70.

同被引文献8

  • 1杜凤英.几个Bernoulli多项式和Euler多项式的关系式[J].浙江师范大学学报(自然科学版),2006,29(4):401-404. 被引量:2
  • 2WilfHS.发生函数论[M].王天明,译.北京:清华大学出版社,2002.
  • 3Brualdi R A.Introductory combinatorics[M].北京:机械工业出版社,2001.
  • 4Graham R L,Knuth D E,Patashnik O.Concrete mathematics[M].北京:机械工业出版社,2002.
  • 5Luo Qiuming,Srivastava H M.Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials[J].Computers and Mathematics with Application,2006(51):631-642.
  • 6Luo Qiuming.Apostol-Euler polynomials of higher order and gaussian hypergeometric functions[J].Tai Wanese Journal of Mathematics,2006,10(4):917-925.
  • 7韩艺兵,祝清顺,贾利新.广义Apostal-Bernoulli-Euler多项式之间的几个恒等式[J].河南科学,2013,31(3):265-267. 被引量:1
  • 8雒秋明,郭田芬,祁锋.Bernoulli数和Euler数的关系[J].河南师范大学学报(自然科学版),2003,31(2):9-11. 被引量:13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部