期刊文献+

RAKING:一种高效的不确定图K-极大频繁模式挖掘算法 被引量:17

RAKING:An Efficient K-Maximal Frequent Pattern Mining Algorithm on Uncertain Graph Database
下载PDF
导出
摘要 由于不确定图蕴含了指数级的可能图实例,基于确定图模型的频繁图模式挖掘算法通常难以在不确定图集合上高效运行.文中提出了一种不确定图数据集上的基于随机游走的K极大频繁子模式挖掘算法.首先,将每个不确定图转换为相应的确定图并挖掘候选频繁模式;然后,将候选频繁模式恢复为不确定图并生成极大频繁模式搜索空间;最后,通过随机游走以相同概率随机地选择K个极大频繁模式.理论分析和实验结果表明文中提出的算法能够高效地获得不确定图集合的K-极大频繁模式. An uncertain graph can represent a large number of possible graph instances.This greatly reduces the efficiency of existing frequent pattern mining algorithms.The paper proposes a random walk based K-maximal frequent pattern mining algorithm on uncertain graph set.Firstly,each uncertain graph is converted to a graph without uncertain information.Candidate frequent patterns are retrieved from the converted graph set.Then,the candidate frequent patterns are transformed to corresponding uncertain graph pattern and searching space of maximal frequent patterns are constructed as well.Finally,K-maximal frequent patterns are selected from all maximal frequent patterns equiprobably.Theoretical analysis and experimental results show that the proposed algorithm can efficiently retrieve the K-maximal frequent patterns of an uncertain graph set.
出处 《计算机学报》 EI CSCD 北大核心 2010年第8期1387-1395,共9页 Chinese Journal of Computers
基金 国家自然科学基金(60903017) 黑龙江大学学生学术科技创新项目(2010183 2010204 2010208)资金资助~~
关键词 不确定图 数据挖掘 随机游走 极大频繁模式 uncertain graph data mining random walk maximal frequent pattern
  • 相关文献

参考文献24

  • 1Inokuchi A,Washio T,Motoda H.An apriori-based algorithm for mining frequent substructures from graph data//Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery(PKDD'00).Freiburg,Germany,2000:13-23.
  • 2Kuramochi M,Karypis G.Frequent subgraph discovery//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2001).San Jose,California,USA,2001:313-320.
  • 3Yan X,Han J.gSpan:Graph-based substructure pattern mining//Proceedings of the 2001 IEEE International Conference on Data Mining(ICDM 2002).Maebashi City,Japan,2002:721-724.
  • 4Tian Y,Hankins R A,Patel J M.Efficient aggregation for graph summarization//Proceedings of the ACM SIGMOD International Conference on Management of Data(SIGMOD 2008).Vancouver,BC,Canada,2008:567-580.
  • 5Chen Chen,Lin Cindy X,Fredrikson Matt,Christodorescu Mihai,Yan Xifeng,Han Jiawei.Mining graph patterns efficiently via randomized summaries//Proceedings of the VLDB09.Lyon,France,2009:742-753.
  • 6Yan X,Han J.Closegraph:Mining closed frequent graph patterns//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD').New York,NY,USA,2003:286-295.
  • 7Zeng Z,Wang J,Zhang J,Zhou L.FOGGER:An algorithm for graph generator discovery//Proceedings of the 12th Inter-national Conference on Extending Database Technology(EDBT 2009).Saint-Petersburg,Russia,2009:517-528.
  • 8Yan X,Cheng H,Han J,Yu P S.Mining significant graph patterns by scalable leap search//Proceedings of the SIGMOD 2008.Vancouver,BC,Canada,2008:433-444.
  • 9Ranu Sayan,Singh Ambuj K.GraphSig:A scalable approach to mining significant subgraphs in large graph databases//Proceedings of the IEEE 25th International Conference on Data Engineering(ICDE'09).Washington,DC,USA:IEEE Computer Society,2009:844-855.
  • 10Huan J,Wang W,Prins J,Yang J.SPIN:Mining maximal frequent subgraphs from graph databases//Proceedings of the SIGKDD.Seattle,WA,USA,2004:581-586.

二级参考文献113

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 3Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 4Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 5Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 6Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188
  • 7Cavallo R, Pittarelli M. The theory of probabilistic databases//Proceedings of the 13th International Conference on Very Large Data Bases. Brighton, 1987:71-81
  • 8Barbara D, Garcia-Molina H, Porter D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 1992, 4(5): 487-502
  • 9Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32-66
  • 10Zimanyi E. Query evaluation in probabilistic databases. Theoretical Computer Science, 1997, 171(1-2): 179-219

共引文献203

同被引文献109

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 3涂承胜.关联规则挖掘的常用算法及其比较分析[J].重庆三峡学院学报,2006,22(3):22-23. 被引量:8
  • 4Hintsanen P. The most reliable subgraph problem//Proceed- ings of the llth European Conference on Principles and Prac tice of Knowledge Discovery in Databases. Warsaw, 2007: 471-478.
  • 5Hintsanen P, Toivonen H. Finding reliable subgraphs from large probabilistic graphs. Data Mining and Knowledge Discovery, 2008, 17(1): 3-23.
  • 6Zou Zhao-Nian, Li JiamZhong, Gao Hong, Zhang Shuo. Mining frequent subgraph patterns from uncertain graph data. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(9) : 1203-1218.
  • 7Potamias M, Bonchi F, Gionis A, Kollios G. K-nearest neighbors in uncertain graphs//Proceedings of the VLDB, Singapore, 2010:997-1008.
  • 8Hua M, Pei J. Probabilistic path queries in road networks: Traffic uncertainty aware path selection//Proceedings of the 13th International Conference on Extending Database Tech nology(EDBT 2010) Lausanne. Switzerland, 2010:347-358.
  • 9Kurzhanski A B, Varaiya P. On reachability under uncer- tainty. SIAM Journal on Control and Optimization, 2002, 41(1): 181-216.
  • 10Rasteiro D D M L, Anjo A J B. Optimal paths in probabilistic networks. Journal of Mathematical Sciences, 2004, 120(1): 974-987.

引证文献17

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部