期刊文献+

基于领域知识的不确定关系模式集成 被引量:3

Uncertain Relation Schema Integration Based on Domain Knowledge
下载PDF
导出
摘要 为了解决关系数据库中关系模式集成中的不确定问题,提出了一个基于领域知识的不确定关系模式集成模型。该模型运用领域知识、语义集成方法和证据组合方法处理模式集成各个阶段的不确定性,并给出了各阶段不确定度的表示和计算方法。文中给出了不确定匹配关系和不确定模式集成的全新定义,提出了一种全局集成模式可信度的计算方法。实例分析证明该模型是可行的,与已知方法相比具有较高的执行效率和较低的时间复杂度。 To resolve the uncertainty of relation schema integration in relation database,a uncertain schema integration model called URSIM(Uncertain relation schema integration model) is proposed based on domain knowledge.Domain knowledge,semantic integration method and proof combination method are applied in the model.Expression and computing methods of uncertain degree are proposed for every phase.New definitions of uncertain matching relation and uncertain schema integration are proposed.A counting method is proposed for reliability of global integrated schema.Experimental results show that the URSIM is feasible.Compared with the existed methods,the model is efficient and can reduce time complexity.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2010年第4期409-414,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60903027) 江苏省"六大人才高峰"资助项目(90718021) 国家省部级专项先期投入基金(2010XQTR04)
关键词 不确定模式匹配 语义集成 证据组合方法 不确定模式集成 uncertain schema matching semantic integration proof combination methods uncertain schema integration
  • 引文网络
  • 相关文献

参考文献16

  • 1Magnani M, Rizopoulos N, McBrien P, et al. Conceptual modeling - ER 2005 [ M ]. Heidelberg: Springer Berlin,2005 : 31 -46.
  • 2Magnani M, Montesi D. Uncertainty in data integration: Current approaches and open problems [ A ]. Proceedings of the First VLDB Workshop on Manage- ment of Uncertain Data [ C]. Enschede, The Netherlands: the Centre for Telematics and Information Technology( CTIT), 2007 : 18 - 31.
  • 3Dong X L, Halevy A Y, Yu C. Data integration with uncertainty[ J ]. The VLDB Journal, 2009,18 (2) : 469 - 500.
  • 4Madhavan J, Bemstein P A, Rahm E. Generic schema matching with Cupid [ A ]. Proceedings of the 27th International Conference on Very Large Data Bases [C]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. , 2001 : 49 - 58.
  • 5Doan A H, Madhavan J, Domingos P, et al. Learning to map ontologies on the Semantic Web [ J ]. The VLDB Journal, 2003, 12(4) : 303 -319.
  • 6Melnik S, Garcia-Molina H, Rahm E. Similarity flooding: A versatile graph matching algorithm and its application to schema matching [ A ]. Proceedings of the 18th International Conference on Data Engineering[ C ]. Washington, USA : IEEE Computer Society, 2002:117-128.
  • 7Halevy A, Rajaraman A, Ordille J. Data integration: The teenage years[ A]. Proceedings of the 32nd International Conference on VLDB [ C ]. Seoul, Korea: VLDB Endowment, 2006: 9- 16.
  • 8Nottelmann H, Straccia U. Splmap: A probabilistic approach to schema matching [ J ]. Lecture Notes in Computer Science, 2005, 3408:81-95.
  • 9Nottelmann 'H, Straccia U. Information retrieval and machine learning for probabilistic schema matching [J]. Information Processing and Management, 2007, 43 ( 3 ) : 552 - 576.
  • 10Gal A, Anaby-Tavor A, Trombetta A, Montesi D. A framework for modeling and evaluating automatic se- mantic reconciliation [ J ]. The VLDB Journal, 2003, 14(1): 1-18.

二级参考文献8

  • 1郭华伟,施文康,邓勇,陈智军.证据冲突:丢弃,发现或化解?[J].系统工程与电子技术,2007,29(6):890-898. 被引量:55
  • 2Liao Shu-hsien.Knowledge management technologies and applications-literature review from 1995 to 2002[J].Expert Systems with Applications,2003 (25):155-164.
  • 3Desouza K C,Awazu Y.Maintaining knowledge man-agement systems:A strategic imperative[J].Journal of the American Society for Information Science and Technology,2005,56 (7):765-768.
  • 4Grace A,Butler T.Beyond knowledge management:Introducing learning management systems[J].Journal of Cases on Information Technology,2005,7(1):53 -70.
  • 5Lu Su,Li Quanlong,Xu Xiaofei.Knowledge representation and reasoning algorithm based on fuzzy rule[J].Journal of Harbin Institute of Technology,2005,37 (SUPPL 1):245-249.
  • 6Grzeszczyk T.Approximate reasoning in structural funds knowledge management system[J].WSEAS Transactions on Information Science and Applications,2005,2 (2):110-115.
  • 7张多林,潘泉,张洪才,邢清华.一种基于信息源可信度的证据组合新方法[J].系统工程与电子技术,2008,30(7):1210-1213. 被引量:19
  • 8殷平,丁秋林.推理技术在决策支持系统中的应用[J].计算机应用,2004,24(7):141-143. 被引量:4

共引文献13

同被引文献36

  • 1Dong X L, Halevy A Y, Yu C. Data integration with uncertainty [J]. The VLDB Journal, 2009, 18 (2) : 469-500.
  • 2Yu Daren, Hu Qinghua, Wu Congxin. Uncertainty measures for fuzzy relations and their applications I-J]. Applied Soft Computing, 2007, 7 (3): 1135- 1143.
  • 3Pawlak Z, Skowron A. Rudiments of rough sets [J]. Information Sciences, 2007, 177(1) : 3-27.
  • 4Qian Yuhua, Liang Jiye, Li Deyu, et al. Measures for evaluating the decision performance of a decision table in rough set theory [J]. Information Sciences, 2008, 178(1): 181-202.
  • 5Liu Guilong. Rough set theory based on two univer- sal sets and its applications [J]. Knowledge-Based Systems, 2010, 23(2):110-115.
  • 6Jung Jaeyoon, Chin Changho, Cardoso J. An en- tropy-based uncertainty measure of process models [J]. Information Processing Letters, 2011, 111(3) 135-141.
  • 7Magro M C, Pinceti P. A confirmation technique for predictive maintenance using the rough set theory [J]. Computing & Industrial Engineering, 2009, 56 (4) : 1319-1327,.
  • 8Chert Xianghui, Zhu Shanjun, Ji Yindong. Rule un- certainty measurements based on entropy and vari- able rough set [J]. Journal of Tsing hua University (Science ~ Technology Edition), 2001, 47(3) : 109- 112.
  • 9Magnani M, Rizopoulos N, Brien M C, et al. Con- ceptual Modeling-ER 2005 [ M ]. Heidelberg : Springer Berlin, 2005: 31-46.
  • 10SHVAIKO P, EUZENAT J. A survey of schema-based matc- hing approaches [ J ]. Journal on Data Semantics IV, 2005 (3730) : 146-171.

引证文献3

二级引证文献4

;
使用帮助 返回顶部