期刊文献+

ON THE EXPECTED DISCOUNTED PENALTY FUNCTION IN A MARKOV-DEPENDENT RISK MODEL WITH CONSTANT DIVIDEND BARRIER 被引量:7

ON THE EXPECTED DISCOUNTED PENALTY FUNCTION IN A MARKOV-DEPENDENT RISK MODEL WITH CONSTANT DIVIDEND BARRIER
下载PDF
导出
摘要 This article considers a Markov-dependent risk model with a constant dividend barrier. A system of integro-differential equations with boundary conditions satisfied by the expected discounted penalty function, with given initial environment state, is derived and solved. Explicit formulas for the discounted penalty function are obtained when the initial surplus is zero or when all the claim amount distributions are from rational family. In two state model, numerical illustrations with exponential claim amounts are given. This article considers a Markov-dependent risk model with a constant dividend barrier. A system of integro-differential equations with boundary conditions satisfied by the expected discounted penalty function, with given initial environment state, is derived and solved. Explicit formulas for the discounted penalty function are obtained when the initial surplus is zero or when all the claim amount distributions are from rational family. In two state model, numerical illustrations with exponential claim amounts are given.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1481-1491,共11页 数学物理学报(B辑英文版)
基金 supported in part by Hubei Normal University Post-graduate Foundation(2007D59 and 2007D60) the Science and Technology foundation of Hubei(D20092207) the National Natural Science Foundation of China(10671149)
关键词 Markov-dependent risk model dividend barrier Cerber-Shiu function integro-differential equation Laplace transform Markov-dependent risk model dividend barrier Cerber-Shiu function integro-differential equation Laplace transform
  • 相关文献

参考文献14

  • 1Asmussen S. Ruin Probabilities. Singapore :World Scientific, 2000.
  • 2Albrecher H, Boxma O. On the discounted penalty function in a Markov-dependent risk model. Insurance: Mathematics and Economics, 2005, 37(2): 650-672.
  • 3Albrecher H, Boxma O. A ruin model with dependence between claim sizes and claim intervals. Insurance: Mathematics and Economics, 2004, 35(2): 245-254.
  • 4Janssen J, Reinhard J. Probabilit~s de ruine pour une classe de modules de risque semi-Markoviens. Astin Bulletin, 1985, 15(2): 123-134.
  • 5De Finetti Bruno. Su un'impostazione alternativa dell teoria collectiva del rischio. Transactions of the ⅩⅤ International Congress of Actuaries, 1957, 2:433-44.
  • 6Gerber H. Shiu E. The time value of ruin in a Sparre Anderson model: ruin theory by dividend differences. North American Actuarial Journal, 2006, 9(2): 49-69.
  • 7Gerber H, Shiu E. On optimal dividend strategies in the compound poisson model. North American Actuarial Journal, 2006, 10(3): 68-84.
  • 8Lin X, Willmot G, Drekic S. The classical risk model with a constant dividend barrier:Analysis of the Gerber-Shiu discounted penalty function. Insurance: Mathematics and Economics, 2003, 33(2): 551-566.
  • 9M.zhou, J.Y.Guo. Classical risk model with threshold dividend strategy. Acta Mathematica Scientia, 2008, 28B(2): 355-362.
  • 10Lu Yi, Li Shuangming. On the probability of ruin in a Markov-modulated risk model. Insurance: Mathe- matics and Economics, 2005, 37(3): 522-532.

同被引文献11

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部