期刊文献+

Effect of Potassium on Ultrastructure of Maize Stalk Pith and Young Root and Their Relation to Stalk Rot Resistance 被引量:6

Effect of Potassium on Ultrastructure of Maize Stalk Pith and Young Root and Their Relation to Stalk Rot Resistance
下载PDF
导出
摘要 To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. In K deficient treatment, parenchyma cells of stalk pith had abnormal structure, and the cell wall between upper and lower adjacent cell was damaged, resulting in the loss of connections between vascular cells and insufficient supporting capacity. However, an improved K nutrition helped to keep a quite tight arrangement of root cell with thick cell wall, and prevent the invasion of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated at the invading point to prevent the deveJopment of the mycelium. Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability, preventing the expansion of intracellular space to reduce the chances of pathogen invasions, and through reinforcing cell wall and formation of intercellular and intracellular material to restrict further development of pathogen in host cell. To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. In K deficient treatment, parenchyma cells of stalk pith had abnormal structure, and the cell wall between upper and lower adjacent cell was damaged, resulting in the loss of connections between vascular cells and insufficient supporting capacity. However, an improved K nutrition helped to keep a quite tight arrangement of root cell with thick cell wall, and prevent the invasion of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated at the invading point to prevent the deveJopment of the mycelium. Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability, preventing the expansion of intracellular space to reduce the chances of pathogen invasions, and through reinforcing cell wall and formation of intercellular and intracellular material to restrict further development of pathogen in host cell.
出处 《Agricultural Sciences in China》 CAS CSCD 2010年第10期1467-1474,共8页 中国农业科学(英文版)
基金 supported by the National Basic Research Program of China(973 Program,2007CB109306) the National Natural Science Foundation of China(30571018) the Natural Science Foundation of Beijing,China(6062025) the International Plant Nutrition Institute
关键词 potassium (K) maize stalk rot ULTRASTRUCTURE disease resistance potassium (K), maize stalk rot, ultrastructure, disease resistance
  • 相关文献

参考文献8

二级参考文献77

共引文献118

同被引文献59

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部