期刊文献+

Wireless location algorithm using digital broadcasting signals based on neural network 被引量:1

基于神经网络的数字广播信号无线定位算法(英文)
下载PDF
导出
摘要 In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification. 为了提高非视距(NLOS)环境下无线定位的准确性和可靠性,提出了一种利用数字广播信号进行移动台定位的神经网络方法.该方法利用神经网络的学习特性和逼近任意非线性函数的能力,建立到达时间(TOA)和到达时间差(TDOA)测量数据与坐标之间的映射关系.将神经网络的连接权值作为非线性动态系统的状态量进行估计,用基于扩展卡尔曼(EKF)的实时神经网络训练算法来训练多层感知器网络.由于基于EKF的训练算法给出的是连接权值的近似最小方差估计,其收敛性要优于误差反向传播(BP)算法.仿真结果表明,该算法在NLOS环境下有较高的定位精度,性能优于BP基的神经网络算法和最小二乘算法;且该定位方法不依赖于特定的NLOS误差分布,也无需视距(LOS)和非视距识别.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期394-398,共5页 东南大学学报(英文版)
基金 The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227) the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
关键词 digital broadcasting signals neural network extended Kalman filter (EKF) backwards error propagation algorithm multilayer perceptron 数字广播信号 神经网络 扩展卡尔曼滤波 误差反向传播算法 多层感知器
  • 相关文献

参考文献12

  • 1毛永毅,李明远,张宝军.基于RBF神经网络的蜂窝无线定位算法[J].系统工程与电子技术,2008,30(9):1798-1800. 被引量:4
  • 2Sinan Gezici.A Survey on Wireless Position Estimation[J]. Wireless Personal Communications . 2008 (3)
  • 3Zoran Salcic.GSM Mobile Station Location Using Reference Stations and Artificial Neural Networks[J]. Wireless Personal Communications . 2001 (3)
  • 4Gu Y Y,Lo A,Niemegeers I.A survey of indoor positio- ning systems for wireless personal networks. IEEE Com- munications Surveys & Tutorials . 2009
  • 5Rabinowitz M,Spilker J J.A new positioning system using television synchronization signals. IEEE Transactions on Broadcasting . 2005
  • 6Ilin R,Kozma R,Werbos P J.Beyond feedforward models trained by backpropagation: a practical training tool for a more efficient universal approximator. IEEE Transactions on Neural Networks . 2008
  • 7Haykin S.Kalman filtering and neural networks. . 2001
  • 8Guvenc I,Chong C C.A survey on TOA based wireless lo- calization and NLOS mitigation techniques. IEEE Com- munications Surveys & Tutorials . 2009
  • 9Molisch A F,Asplund H,Heddergott R, et al.The COST259 directional channel model—PartⅠ: overview and methodology. IEEE Transactions on Wireless Communication . 2006
  • 10Asplund H,Glazunov A A,Molisch A F, et al.The COST259directional channel model—PartⅡ: macrocells. IEEE Transactions on Wireless Communication . 2006

二级参考文献7

  • 1Reed J, Rappaport T. An overview of the challenges and progress in meeting the E-911 requirement for location service[J]. IEEE Communication Magazine, 1998, (4) : 30 - 37.
  • 2Foy W. Position-location solutions by Taylor series estimation [J].IEEE Journal of Aerospace and Electronic Systems, 1976,12 (2):187-194.
  • 3Fang B T. Simple solutions for hyperbolic and related fixes[J]. IEEE Trans. on Aerospace and Electronic Systems, 1990, 26 (5): 748-753.
  • 4Schau H C . Passive source localization employing intersecting spherical surfaces from time of arrival difference[J]. IEEE Trans. on Acoustics Speech and Signal Processing, 1987, 35 (8) :1223- 1225.
  • 5Chan Y T, Ho K C. A simple and efficient estimationor for hyperbolic location[J].IEEE Trans. on Signal Processing, 1994, 421(8): 1905-1915.
  • 6Greenstein L J. A new path-gain/delay spread propagation model for digital cellular channel[J]. IEEE Trans. on VT, 1997,46 (2) :177 - 484.
  • 7邓平,刘林,范平志.一种基于TDOA重构的蜂窝网定位服务NLOS误差消除方法(英文)[J].电波科学学报,2003,18(3):311-316. 被引量:22

共引文献3

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部