摘要
A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects.
为了改善实际交通环境中运动车辆车牌图像的质量,提出一种新的超分辨率重建方法,即通过融合低分辨率图像间的互补信息得到一幅高分辨率车牌图像.首先,在超分辨率重建正则化框架下引入梯度残差项作为一个梯度强制项来改善重建图像的质量.其次,为了提高重建算法的鲁棒性,用L1范数度量数据残差项和梯度残差项.最后,用最速下降法求解相应的最小能量泛函.模拟和实际视频图像序列的实验结果验证了所提方法的有效性和实用性,所提方法在重建图像的信噪比指标和视觉效果方面均优于双三次插值和DAMRF法.
基金
The National Natural Science Foundation of China (No.60972001)
the National Key Technology R&D Program of China duringthe 11th Five-Year Plan Period (No.2009BAG13A06)