期刊文献+

基于Voronoi图和三角剖分的闭合曲线重建

Closed Curve Reconstruction Based on Voronoi Diagram and Triangulation
下载PDF
导出
摘要 以Voronoi图和Delaunay三角剖分为基础,针对二维闭合曲线集的采样点集,提出一种曲线重建算法。该算法按给定采样密度对曲线集进行采样,从而用一条或多条线段准确地重建曲线集,将采样点密集程度的度量定义为点集的本地特征值度量,以此要求采样达到一定的密集程度。理论分析证明该算法的时间复杂度为O(nlogn)。 Based on Voronoi diagram and Delaunay triangulation and aiming at sample set of 2D closed curve set, this paper proposes a curves reconstruction algorithm. It samples the curve set according to sample dense to correctly reconstruct curve set with one or some lines. The measurement of dense extent is defined as local feature size of point, and samples are demanded to achieve a certain dense degree. Analysis proves that time complexity of the algorithm is O(nlogn).
出处 《计算机工程》 CAS CSCD 北大核心 2010年第21期81-82,85,共3页 Computer Engineering
关键词 曲线重建 点的局部特征值 VORONOI图 DELAUNAY三角剖分 curve reconstruction local eigenvalue of point Voronoi diagram Delaunay triangulation
  • 相关文献

参考文献8

  • 1Várady T,Martin R R,Cox J.Reverse Engineering of Geometric Models: An Introduction[J].Computer Aided Design.1997,29(4):255-268.
  • 2钟纲,杨勋年,汪国昭.平面无序点集曲线重建的跟踪算法[J].软件学报,2002,13(11):2188-2193. 被引量:13
  • 3Dakowicz M,Visualizing G C.Terrain Models from Contours- Plausible Ridge,Valley and Slope Estimation[C]//Proc.of International Workshop on Visualization and Animation of Landscape.Kunming,China: [s.n.],2002.
  • 4O’Rourke J.Computational Geometry in C[M].Cambridge,UK: Cambridge University Press,1994.
  • 5Ruppert J.A Delaunay Refinement Algorithm for Quality 2D Mesh Generation[J].Journal of Algorithms.1995,18(3):548-585.
  • 6Dey T K,Kumar P.A Simple Provable Algorithm for Curve Reconstruction[C]//Proc.of the 10th ACM-SIAM Symposium on Discrete Algorithms.[S.l.]: ACM Press,1999.
  • 7陈学工,黄晶晶.基于最优凸壳技术的Delaunay三角剖分算法[J].计算机工程,2007,33(17):93-95. 被引量:5
  • 8袁翰,李伟波,陈婷婷.对构建Delaunay三角网中凸壳算法的研究与改进[J].计算机工程,2007,33(7):70-72. 被引量:10

二级参考文献27

  • 1戴晓明,朱萍.平面散乱点三角剖分分治算法的实现[J].计算机技术与发展,2006,16(1):11-12. 被引量:6
  • 2陈学工,陈树强,王丽青.基于凸壳技术的Delaunay三角网生成算法[J].计算机工程与应用,2006,42(6):27-29. 被引量:17
  • 3Várady, T., Martin, R.R., Cox, J. Reverse engineering of geometric models??an introduction. Computer Aided Design, 1997, 29(4):255~268.
  • 4Singh, R., Cherkassky, V., Papanikolopoulos, N. Self-Organizing maps for the skeletonization of sparse shapes. IEEE Transactions on Neural Networks, 2000,11(1),241~248.
  • 5Korsters, M. Curvature-Dependent parameterization of curves and surfaces. Computer Aided Design, 1991,23(8):569~578.
  • 6Sarkar, B., Menq, C.-H. Parameter optimization in approximating curves and surfaces to measurement data. Computer Aided Geometric Design, 1991,8(4):267~290.
  • 7Yang, Xun-nian, Wang, Guo-zhao. Planar point set fairing and fitting by arc splines. Computer Aided Design, 2001,33(1):35~43.
  • 8Levin, D. The approximation power of moving least-squares. Mathematics of Computation, 1998,67(224):1517~1531.
  • 9Lee, I.K. Curve reconstruction from unorganized points. Computer Aided Geometric Design, 2000,17(2):161~177.
  • 10Kégl, B., Linder, T. Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3):281~297.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部