期刊文献+

ANALYSIS FOR GENE NETWORKS BASED ON LOGIC RELATIONSHIPS 被引量:3

ANALYSIS FOR GENE NETWORKS BASED ON LOGIC RELATIONSHIPS
原文传递
导出
摘要 The reverse construction and analysis of the networks of molecular interactions are essential for understanding their functions within cells. In this paper, a logic network model is constructed to investigate the complicated regulation mechanism of shoot genes of Arabidopsis Thaliana in response to stimuli. The dynamics of the complicated logic network is analyzed, discussed, and simulated. The simulation results show that the logic network of the active genes of shoot eventually evolves into eleven attractors under the stimuli, including five 1-periodic and six 2-periodic attractors. Our work provides valuable reference and guidance for biologists to understand and explain Arabidopsis' response to external stimuli by experiments.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期999-1011,共13页 系统科学与复杂性学报(英文版)
基金 This research is supported by the National Natural Science Foundation of China under Grant Nos. 60874036 and 60503002.
关键词 DYNAMICS gene network logic analysis of Phylogenetic profiles systems biology. 逻辑关系 网络分析 基因 周期吸引子 基础 逻辑网络 动力学分析 相互作用
  • 相关文献

参考文献1

二级参考文献31

  • 1Segal E, Friedman N, Kaminski N, et al. From signatures to models: understanding cancer using microarrays. Nat Genet, 2005, 37 (Suppl): S38-S45
  • 2Bhattacharjee A, Richards W G, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA, 2001, 98(24): 13790-13795
  • 3Van't Veer L J, Dai H, Van de Vijver M J, et al Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415(6871): 530-536
  • 4Bowers P M, Cokus S J, Eisenberg D, et al. Use of logic relationships to decipher protein network organization. Science, 2004, 306(5706): 2246-2249
  • 5Bowers P M, O'Connor B D, Cokus S J, et al . Utilizing logical relationships in genomic data to decipher cellular processes. FEBS J, 2005, 272 (20): 5110-5118
  • 6Zhang X, Kim S, Wang T, et al. Joint learning of logic relationships for studying protein function using phylogenetic profiles and the Rosetta Stone method. IEEE Transactions on Signal Processing, 2006, 54(6): 2427-2435
  • 7Zhang J X, Ji Y, Zhang L. Extracting three-way gene interactions from microarray data. Bioinformatics (Oxford, England), 2007, 23(21): 2903-2909
  • 8Wu J, Mellor J C, DeLisi C. Deciphering protein network organization using phylogenetic profile groups, genome informaties. International Conference on Genome Informatics, 2005, 16 (1): 142- 149
  • 9Anderson M W. Functional genomics annotation: it's logical!. Scientist, 2005, 19 (5): 33-33
  • 10Spirin V, Gelfand M S, Mironov A A, et al. A metabolic network in the evolutionary context: Multiscale structure and modularity. Proc Natl Acad Sci USA, 2006, 103 (23): 8774-8779

共引文献1

同被引文献21

  • 1Lander E S, Weinberg R A. Genomics: journey to the center of biQlogy[J]. Science, 2000, 287(5459): 1777-1782.
  • 2Alon U, Barkai N, Notterman D A, Gish K, Ybarra S, Mack D and Levine A J. Broad patterns of gene expression revealed 'c)y clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[J]. Proc Natl Acad Sci USA, 1999, 96:6745 -6750.
  • 3Guyon I, Weston J, Barnhill S and Vapnik V. Gene selection for cancer classification using support vector machine [ J ]. Machine Learning, 2002, 46: 389- 422.
  • 4Tibshirani R, Hastie T, Narasimhan B and Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression [J]. PNAS, 2002, 99(10) : 6567 -6572.
  • 5Khan J, Wei J, Ringner M, Saal L, Ladanyi M, Westermann r, Berthold F, Schwab M, Antonescu C, Peterson C and Meltzer P. Classification and diagnostic prediction of cancers using gene ex- pression profiling and artificial neural networks[ J]. Nature Medi- cine, 2001, 7(6) : 673 - 679.
  • 6Huang DS, Zheng CH. Independent component analysis - based penalized discrimi nant method for tumor classification using gene expression data [ J]. Bioinformatics, 2006, 22 ( 15 ) : 1855 - 1862.
  • 7Ambroise C, McLachlan G J. Selection bias in gene extraction on the basis of microarray gene- expression data[ J]. Proc Natl Acad Sci USA, 2002, 99 : 6562 - 6566.
  • 8Bo T, Jonassen I. New feature subset selection procedures for clas- sification of expression profiles [ J ]. Genome Biology, 2002, 3 (4): 1-11.
  • 9Hastie T, Tibshirani R, Eisen M B, Alizadeh A, Levy R, Staudt L, Chan W C, Botstein D and Brown P. ' Gene shaving' as a method for identifying distinct sets of genes with similar expres- sion patterns [ J ]. Genome Biology, 2000, 1 (2) : 1 - 21.
  • 10Li L, Weinberg C R, Darden T A and Pedersen L G. Gene se- lection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN meth- od[J]. Bioinformatics, 2001, 17:1131-1142.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部