期刊文献+

关于Smarandache函数及Smarandache LCM函数的混合均值 被引量:5

On the hybrid mean value of the Smarandache function and the Smarandache LCM function
下载PDF
导出
摘要 目的研究一个包含Smarandache函数S(n)及Smarandache LCM函数SL(n)的混合均值问题。方法利用初等及解析方法以及组合技巧。结果证明了在一个给定区间[1,x]上,满足S(n)≠SL(n)的正整数的个数与x相比,是一个高阶无穷小。给出了一个混合均值公式。结论函数S(n)与SL(n)的值几乎处处相等。 Aim To study a hybrid mean value problem involving the Smarandache function S(n) and the Smarandache LCM function SL(n).Methods Using the elementary and analytic methods,and some combinational skill.Results It was proved that in the interval ,n:S(n)≠SL(n)=O(x).Given an interesting hybrid mean value formula.Conclusion This shows that the value of S(n) is almost equal to SL(n).
作者 杨明顺
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期772-773,817,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10671155) 陕西省教育厅基金资助项目(09JK432) 陕西省科技厅基金资助项目(08AJ022)
关键词 SMARANDACHE函数 SMARANDACHE LCM函数 最大素因子 混合均值 渐近公式 Smarandache function Smarandache LCM function the largest prime divisor hybrid mean value asmptotic formula
  • 相关文献

参考文献8

  • 1张文鹏.关于F.Smarandache函数的两个问题[J].西北大学学报(自然科学版),2008,38(2):173-176. 被引量:63
  • 2CHEN Jian-bin.Value distribution of the F.SmarandacheLCM function. Scientia Magna . 2007
  • 3LE Mao-hua.Two function equations. SmarandacheNotions Journal . 2004
  • 4KENICHIROK K.Comment and topics on Smarandachenotions and problems. . 1996
  • 5SANDORJozsef.On additive analogues of certain arithmetic function. Smarandache Notion Journal . 2004
  • 6David Gorski.The pseudo Smarandache function. Smarandache Notions Journal . 2002
  • 7David Gorski.The Pseudo-Smarandache functions. Smarandache Notions Journal . 2000
  • 8Murthy A.Some Notions on Least Common Multiples. Smarandache Notions Journal . 2001

二级参考文献9

  • 1徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 2SMARANDACHE F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 3WANG Yong-xing.On the Smarandache function[J].Re-search on Smarandache Problem in Number Theory,2005,2:103-106.
  • 4LU Ya-ming.On the solutions of an equation involving the Smarandarche function[J].Seientia Magna,2006,2(1):76-79.
  • 5SANDOR J.On a dual of the Pscudo-Smarandache func-tion[J].Smarandache Notions (Book Series),2002,13:16-23.
  • 6LE Mao-hua.TWo function equations[J].Smarandache Notions Journal,2004,14:180-182.
  • 7COP,SKI D.The pseudo-Smarandache functions[J].Sma-randache Notions J,2000,12:140-145.
  • 8SANDOR J.On additive analogues of certain arithmetic function[J].Smarandache Notions J,2004,14:128-132.
  • 9KASHIHARA K.Comments and topics on Smarandaehe notions and problems[M].New Mexico:Erhus University Press,1996.

共引文献62

同被引文献37

  • 1林家发.有关素因子函数的均值估计[J].山东大学学报(自然科学版),1993,28(3):253-260. 被引量:2
  • 2徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 3潘承洞,潘承彪.素数定理的证明[M].上海:上海科学技术出版社,1988.
  • 4潘承洞,潘承彪.解析数论基础[M].北京:科学出版社,1988:96-101.
  • 5CHEN Jianbin. Value distribution of the F. Smarandacbe LCM function[J]. Sciencia Magna, 2007,3 (2) : 15-18.
  • 6ZHANG Wenpeng, LI Junzhuang, LIU Duansen. Research on Smarandache problem in number theory[M]. Hexis: Phoenix, 2005: 103-106.
  • 7APOSTOL Tom M. Introduction to analytic number theory[M]. NewYork: Springer-Verlag, 1976.
  • 8SMARANDACHE F. Only problems, not solutions[ M]. Chicago: Xiquan Publishing House, 1993.
  • 9MA Jin-ping. The Smarandache multiplicative function[ J]. Scientia Magna,2006,1(1) : 125 - 128.
  • 10APOSTOL T M. Introduction to analytical number theory[ M]. New York:Springer-Verlag,1976.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部