摘要
In this study, our vibrational spectroscopic analysis is made on hydrogen-bonding between dimethyl sulfoxide and water comprises both experimental Raman spectra and ab initio calculations on structures of various dimethyl sulfoxide/water clusters with increasing water content. The Raman peak position of the v(S=O) stretching mode of dimethyl sulfoxide serves as a probe for monitoring the degree of hydrogen-bonding between dimethyl sulfoxide and water. In addition, the two vibrational modes, namely, the CH3 symmetric stretching mode and the CH3 asymmetric stretching mode have been analysed under different concentrations. We relate the computational results to the experimental vibrational wavenumber trends that are observed in our concentration-dependent Raman study. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the nature of the hydrogen bonding and the structures of the hydrogen-bonded complexes studied.
In this study, our vibrational spectroscopic analysis is made on hydrogen-bonding between dimethyl sulfoxide and water comprises both experimental Raman spectra and ab initio calculations on structures of various dimethyl sulfoxide/water clusters with increasing water content. The Raman peak position of the v(S=O) stretching mode of dimethyl sulfoxide serves as a probe for monitoring the degree of hydrogen-bonding between dimethyl sulfoxide and water. In addition, the two vibrational modes, namely, the CH3 symmetric stretching mode and the CH3 asymmetric stretching mode have been analysed under different concentrations. We relate the computational results to the experimental vibrational wavenumber trends that are observed in our concentration-dependent Raman study. The combination of experimental Raman data with ab initio calculation leads to a better knowledge of the nature of the hydrogen bonding and the structures of the hydrogen-bonded complexes studied.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos. 10774057 and 10974067)
the Graduate Innovation Fund of Jilin University