期刊文献+

数据流上连续动态skyline查询研究 被引量:11

Continuous Dynamic Skyline Queries over Data Stream
下载PDF
导出
摘要 skyline查询能够从大规模数据集上计算满足多个标准的最优点.数据流上的skyline计算是数据流上最基本的查询操作之一,对于很多在线应用具有非常重要的意义,尤其在移动计算环境、网络监控、通信网络以及传感器网络等领域.不同于大部分传统的skyline研究,主要研究数据流上约束skyline和动态skyline计算问题.采用网格索引存储元组,提出了GBDS算法用于计算和维护动态skyline.通过为每个查询定义影响区域,使得在元组到达和失效时需要处理的元组个数最小化.理论分析和实验结果证明了提出方法的有效性. Skyline queries are capable of retrieving interesting points from a large data set according to multiple criteria.As an essential query,skyline computation over data stream is very important for many online applications,including mobile environment,network monitoring,communication,sensor network and stock market trading,etc.The problem of skyline computation has attracted considerable research attention.Different from most popular skyline processing methods,this paper focuses on constrained skyline and dynamic skyline processing over data stream.Instead of computing the skyline results on the whole data set,this kind of skyline query only needs to process parts of the data set,and there are maybe thousands of such queries in the system.To deal with the challenges of the random additions and deletions of the tuples over data stream,we employ a grid based index to store the tuples and put forward an algorithm to compute and maintain skyline set based on it.By making use of the advantage of grid index,we define influence area for every query to minimize the cells need to be processed when new tuples arrive and old tuples expire.Only tuples in the cells that belong to influence area will be processed.This way,the tuples which are not in the influence area will be ignored and the CPU time is saved.Theoretical analysis and experimental evidences show the efficiency of the proposed approaches.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第1期77-85,共9页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2006AA01Z451 2007AA010502 2007AA01Z474)
关键词 数据流 滑动窗口 约束skyline 动态skyline 网格索引 data stream sliding window constrained skyline dynamic skyline grid-based index
  • 相关文献

参考文献19

  • 1Cui Bin, Lu Hua, Xu Quanqing, et al. Parallel distributed processing of constrained skyline queries by filtering[C] // Proc of the 24th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2008:546-555.
  • 2Borzsonyi S, Kossmann D, Stocker K. The skyline operator [C]//Proc of the 17th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2001:421-430.
  • 3Barndorff-Nielsen O, Sobel M. On the distribution of the number of admissible points in a vector random sample [J]. Theory of Probability and Its Application, 1966, 11 (2) : 249-269.
  • 4Dellis E, Seeger B. Efficient computation of reverse skyline queries [C]//Proc of the 33rd Int Conf on Very Large Data Bases. New York: ACM, 2007:291-302.
  • 5Papadias D, Tao Yufei, Fu Greg, et al. Progressive skyline computation in database systems [J]. ACM Trans on Database Systems, 2005, 30(1):41-82.
  • 6Bentley J L, Kung H T, Schkolnick M, et al. On the average number of maxima in a set of vectors and applications [J]. JournaloftheACM, 1978, 25(4):536-543.
  • 7Klan-Lee T, Pin-Kwang E, Ooi B C. Efficient progressive skyline computation [C]//Proc of the 27th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2001: 301-310.
  • 8Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: An online algorithm for skyline queries [C]//Proc of the 28th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2002: 275-286.
  • 9Doulkeridis C, Kotidis Y, subspaee skyline computation et al. SKYPEER: efficient over distributed data [C] // Proc of 23th Int Conf on Data Engineering. Los Alamitos CA: IEEE Computer Society, 2007:416-425.
  • 10Wang Shiyuan, Ooi B C, Tung A K H, et al. Efficient skyline query processing on peevto-peer networks [C] //Proc of the 23rd Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2007:1126-1135.

二级参考文献35

  • 1刘欣,余靖,刘国华.基于窗口查询的轮廓查询算法[J].燕山大学学报,2005,29(5):398-402. 被引量:9
  • 2邓波,贾焰,杨树强.一种高效的分布式Skyline查询算法[J].计算机工程与科学,2007,29(9):97-100. 被引量:4
  • 3Borzsonyi S, Kossmann D, Stocker K. The skyline opera tor//Proceedings of the International Conference on Data Engineering (ICDE). Heidelberg, Germany, 2001:421-430.
  • 4Chomicki J, Godfrey P, Gryz J, Liang D. Skyline with presorting//Proeeedings of the International Conference on Data Engineering (ICDE). Bangalore, India, 2003:717-719.
  • 5Tan K L, Eng P K, Ooi B C. Efficient progressive skyline computation//Proceedings of the International Conference on Very Large Data Bases (VLDB). Roma, Italy, 2001: 301- 310.
  • 6Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: An online algorithm for skyline queries//Proceedings of the International Conference on Very Large Data Bases (VLDB). Hong Kong, China, 2002:275-286.
  • 7Papadias D, Tao Y. Progressive skyline computation in data- base systems. ACM Transactions on Database Systems (TODS), 2005, 30(1): 41-82.
  • 8高云君,陈根才,陈岭,陈纯.一种存储最佳的分支界限轮廓查询算法//全国数据库学术会议(NDBC).广州,2006:526-533.
  • 9Balke W T, Gtitzer U, Zheng J X. Efficient distributed skylining for web information systems//Proceedings of the International Conference on Extending Database Technology (EDBT). Heraklio,Greece, 2004:256- 273.
  • 10Wu P, Zhang C, Feng Y. Skyline queries for scalable distri bution//Proceedings of the International Conference on Ex tending Database Technology (EDBT). Munich, Germany 2006:112- 130.

共引文献8

同被引文献127

  • 1刘殷雷,刘玉葆,陈程.不确定性数据流上频繁项集挖掘的有效算法[J].计算机研究与发展,2011,48(S3):1-7. 被引量:14
  • 2赵越,王意洁,王媛,李小勇.一种高效的不确定数据流并行Skyline查询处理方法[J].计算机研究与发展,2013,50(S2):132-139. 被引量:3
  • 3谢志军,王雷,林亚平,陈红,刘永和.传感器网络中基于数据压缩的汇聚算法[J].软件学报,2006,17(4):860-867. 被引量:32
  • 4谢洁锐,胡月明,刘才兴,刘兰.无线传感器网络的时间同步技术[J].计算机工程与设计,2007,28(1):76-77. 被引量:9
  • 5孙圣力,黄震华,李金玖,郭建奎,朱扬勇.数据流上高效计算子空间Skyline的算法[J].计算机学报,2007,30(8):1418-1428. 被引量:9
  • 6Borzsonyi S, Kossmann D, Stoeker K. The Skyline operator[C]# Proceedings of the 17th International Conference on Data Engineering. Washington, DC, USA: IEEE Computer Society, 2001: 421-430.
  • 7Tan K L, Eng P K, Ooi B C. Efficient progressive Skyline computation[C]//Proceedings of the 27th International Con- ference on Very Large Data Bases (VLDB '01), Roma, Italy, 2001. San Francisco, CA, USA: Morgan Kaufmarm Pub- lishers Inc, 2001: 301-310.
  • 8Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: an online algorithm for Skyline queries[C]/lProceedings of the 28th International Conference on Very Large Data Bases (VLDB '02), Hong Kong, China, 2002: 275-286.
  • 9Papadias D, Tao Yufei. Progressive Skyline computation in database systems[J]. ACM Transactions on Database Systems (TODS), 2005, 30(1) : 41-82.
  • 10Huang Zhiyong, Lu Hua, Ooi B C, et al. Continuous Skyline queries for moving objects[J]. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2006, 18(12): 1645-1658.

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部