期刊文献+

BOUNDEDNESS OF DYADIC DERIVATIVE AND CESARO MEAN OPERATOR ON SOME B-VALUED MARTINGALE SPACES 被引量:1

BOUNDEDNESS OF DYADIC DERIVATIVE AND CESARO MEAN OPERATOR ON SOME B-VALUED MARTINGALE SPACES
下载PDF
导出
摘要 In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space. In this article, it is proved that the maximal operator of one-dimensional dyadic derivative of dyadic integral I* and Cesàro mean operator σ* are bounded from the B-valued martingale Hardy spaces pΣα, Dα, pLα, p H#α, pKr to Lα (0 α ∞), respectively. The facts show that it depends on the geometrical properties of the Banach space.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期268-280,共13页 数学物理学报(B辑英文版)
基金 supported by the Nation Natural Science Foundation of China(10671147) Wuhan University of Science and Engineering under grant (093877)
关键词 B-valued martingale martingale space dyadic derivative dyadic integral B-valued martingale martingale space dyadic derivative dyadic integral
  • 相关文献

参考文献1

二级参考文献2

共引文献5

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部