期刊文献+

Some properties on G-evaluation and its applications to G-martingale decomposition 被引量:21

Some properties on G-evaluation and its applications to G-martingale decomposition
原文传递
导出
摘要 In this article, a sublinear expectation induced by G-expectation is introduced, which is called G- evaluation for convenience. As an application, we prove that for any ξ∈ L β G (Ω T ) with some β > 1 the martingale decomposition theorem under G-expectaion holds, and that any β > 1 integrable symmetric G-martingale can be represented as an Ito integral w.r.t. G-Brownian motion. As a byproduct, we prove a regularity property for G-martingales: Any G-martingale {M t } has a quasi-continuous version. In this article, a sublinear expectation induced by G-expectation is introduced, which is called G- evaluation for convenience. As an application, we prove that for any ξ∈ L β G (Ω T ) with some β 〉 1 the martingale decomposition theorem under G-expectaion holds, and that any β 〉 1 integrable symmetric G-martingale can be represented as an Ito integral w.r.t. G-Brownian motion. As a byproduct, we prove a regularity property for G-martingales: Any G-martingale {M t } has a quasi-continuous version.
出处 《Science China Mathematics》 SCIE 2011年第2期287-300,共14页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China (973 Program) (Grant No. 2007CB814902)
关键词 G-EXPECTATION G-evaluation G-martingale decomposition theorem 分解定理 上鞅 应用 评价 性质 布朗运动 期望 次线性
  • 相关文献

参考文献9

  • 1Ming-shang Hu Shi-ge Peng.On Representation Theorem of G-Expectations and Paths of G-Brownian Motion[J].Acta Mathematicae Applicatae Sinica,2009,25(3):539-546. 被引量:18
  • 2Peng S.G-expectation, G-Brownian motion and related stochastic calculus of It o type. . 2006
  • 3Peng S.G-Brownian motion and dynamic risk measure under volatility uncertainty. . 2007
  • 4Soner M,Touzi N,Zhang J.Martingale representation theorem for the G-expectation. . 2009
  • 5Song,Y.Properties of hitting times for G-martingale. http://arxiv.org/abs/1001.4907 . 2010
  • 6H. Mete Soner,Nizar Touzi,Jianfeng Zhang.Martingale Representation The-orem for the G-expectation. . 2010
  • 7Laurent Denis,Mingshang Hu,Shige Peng.Function Spaces and Capac-ity Related to a Sublinear Expectation:Application to G-Brownian Motion Pathes. . 2008
  • 8He S,Wang J,Yan J.Semi-martingales and Stochastic Calculus. . 1992
  • 9S. G. Peng.Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and Their Applications . 2008

二级参考文献1

共引文献17

同被引文献28

引证文献21

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部