期刊文献+

Monitoring continuous k-nearest neighbor queries in the hybrid wireless network

Monitoring continuous k-nearest neighbor queries in the hybrid wireless network
原文传递
导出
摘要 In a mobile/pervasive computing environment,one of the most important goals of monitoring continuous spatial queries is to reduce communication cost for location-updates.Existing work uses many cellular wireless connections,which would easily become the performance bottleneck of the overall system.This paper introduces a novel continuous kNN query monitoring method to reduce communication cost in the hybrid wireless network,where the moving objects in the wireless broadcasting system construct the ad-hoc network.Simulation results prove the efficiency of the proposed method,which leverages the wireless broadcasting channel as well as the WiFi link to alleviate the burden on the cellular uplink communication cost. In a mobile/pervasive computing environment, one of the most important goals of monitoring continuous spatial queries is to reduce communication cost for location-updates. Existing work uses many cellular wireless connections, which would easily become the performance bottleneck of the overall system. This paper introduces a novel continuous kNN query monitoring method to reduce communication cost in the hybrid wireless network, where the moving objects in the wireless broadcasting system construct the ad-hoc network. Simulation results prove the efficiency of the proposed method, which leverages the wireless broadcasting channel as well as the WiFi link to alleviate the burden on the cellular uplink communication cost.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第3期213-220,共8页 浙江大学学报C辑(计算机与电子(英文版)
基金 Project supported by the second stage of the Brain Korea 21 Project
关键词 Continuous kNN query monitoring Ad-hoc networks Wireless broadcasting systems Continuous kNN query monitoring, Ad-hoc networks, Wireless broadcasting systems
  • 相关文献

参考文献20

  • 1Akyildiz,I.F.,Su,W.,Sankarasubramaniam,Y.,Cayirci,E.,2002.A survey on sensor network.IEEE Commun.Mag.,40(8):102-114.[doi:10.1109/MCOM.2002.1024422].
  • 2Babcock,B.,Olston,C.,2003.Distributed Top-k Monitoring.Proc.ACM SIGMOD Int.Conf.on Management of Data,p.28-39.[doi:10.1145/872757.872764].
  • 3Bohm,C.,2000.A cost model for query processing in high dimensional data spaces.ACM Trans.Database Syst.,25(2):129-178.[doi:10.1145/357775.357776].
  • 4Cheung,K.L.,Fu,A.W.C.,1998.Enhanced nearest neighbor search on the R-tree.ACM SIGMOD Rec.,27(3):16-21.[doi:10.1145/290593.290596].
  • 5Giordano,S.,Stojmenovic,I.,Blazevic,L.,2003.PositionBased Routing Algorithms for Ad Hoc Networks:a Taxonomy.In:Cheng,X.,Huang,X.,Du,D.Z.(Eds.),Ad Hoc Wireless Networking.Kluwer Academic Publishers,Dordrecht,p.103-136.
  • 6Guttman,A.,1984.R-trees:a dynamic index structure for spatial searching.ACM SIGMOD Rec.,14(2):47-57.[doi:10.1145/971697.602266].
  • 7Hjaltason,G.R.,Samet,H.,1999.Distance browsing in spatial databases.ACM Trans.Database Syst.,24(2):265-318.[doi:10.1145/320248.320255].
  • 8Hu,H.,Xu,J.,Lee,D.,2005.A Generic Framework for Monitoring Continuous Spatial Queries over Moving Objects.Proc.ACM SIGMOD Int.Conf.on Management of Data,p.479-490.[doi:10.1145/1066157.1066212].
  • 9Imielinski,T.,Viswanathan,S.,Bardrinath,B.R.,1997.Data on air:organization and access.IEEE Trans.Knowl.Data Eng.,9(3):353-372.[doi:10.1109/69.599926].
  • 10Junglas,I.A.,Watson,R.T.,2008.Location-based services.Commun.ACM,51(3):65-69.[doi:10.1145/1325555.1325568].

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部