期刊文献+

短乳杆菌NCL912耐酸性研究 被引量:3

The Acid Resistance of Lactobacillus brevis NCL912
下载PDF
导出
摘要 研究了短乳杆菌NCL912在酸性环境下的生长及在pH2.0极端酸性环境中的耐酸性能。比较了在含L-谷氨酸钠与不含L-谷氨酸钠的培养基中该菌的生长、耐酸性、γ-氨基丁酸产量及谷氨酸脱羧酶活力,并对其耐酸机理进行了分析。结果表明,短乳杆菌NCL912在pH>3.0的酸性环境中可以生长,在pH5.0的培养基中生长较好,在pH 2.0的培养基中可以存活4~6 h。含L-谷氨酸钠培养基中细菌生长较好,在pH 4.0时,L-谷氨酸钠全部转化为γ-氨基丁酸,产量达11.44 g/L;在2种培养基中细菌的存活率存在显著性差异(P<0.05),谷氨酸脱羧酶活力也存在显著性差异(P<0.05),含L-谷氨酸钠培养基中细菌耐酸性强,酶活力高。由此可见,短乳杆菌NCL912能够耐受低pH的原因可能与γ-氨基丁酸的生成有关,即其耐酸机制可能是谷氨酸-γ-氨基丁酸对向运输机制。 The growth of Lactobaillus brevis NCL912,a γ-aminobutyric acid high-yielding strain,in acid environment and its acid tolerance in extreme acid environment(pH 2.0) were investigated in this paper.Meanwhile,the comparision of the growth,acid resistance,the yield of γ-aminobutyric acid and glutamate decarboxylase activity were determined in the media with and without the addition of L-glutamate sodium(L-MSG).The results showed that Lactobaillus brevis NCL912 could grow at pH3.0,grow well at pH 5.0,and could survive for more than four hours at pH 2.0.The addition of L-MSG can enhance the growth of the strain.L-MSG was converted completely to γ-aminobutyric acid at pH4.0.In addition,the survival percentage(%) and the glutamate decarboxylase activity in the media with and without L-MSG were significantly different(P0.05).The survival percentage(%) and the glutamate decarboxylase activity were better in the media with L-MSG.It was implied that the acid resistance of Lactobaillus brevis NCL912 was related to glutamate-γ-aminobutyric acid antiporter system.
出处 《食品与发酵工业》 CAS CSCD 北大核心 2010年第12期59-63,共5页 Food and Fermentation Industries
关键词 短乳杆菌NCL912 L-谷氨酸钠 Γ-氨基丁酸 谷氨酸脱羧酶 Lactobacillus brevis NCL912 L-glutamate sodium γ-aminobutyric acid glutamate decarboxylase
  • 引文网络
  • 相关文献

参考文献9

  • 1倪学勤,曾东,彭媛,唐雨蕊,郑晓丽.麦类提取物对4株乳酸杆菌耐酸能力的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):255-260. 被引量:6
  • 2Holzapfel WH, Haberer P, Snel J, et al. Overview of gut flora and probiotics [J]. Int J Food Microbiol, 1998, 41 (2) :85 - 101.
  • 3Kim HW, Kashima Y, Ishikawa K, et al. Purification and characterization of the first archaeal glutamate decarboxylase from Pyrococcus horikoshii[ J]. Biosci Biotechnol Biochem, 2009,73 ( 1 ) :224 - 227.
  • 4Richard H, Foster J W. Escherichia coli glutamate - and arginine - dependent acid resistance systems increase internal pH and reverse transmembrane potential[ J]. J Bacteriol, 2004,186(18) :6 032 -6 041.
  • 5Lin J, Smith M P, Chapin K C, et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli[ J ]. Appl Environ Microbiol, 1996, 62(9) :3 094 -3 100.
  • 6Small P L, Waterman S R. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli [J]. TrendsMicrobiol, 1998, 6(6) :214 -216.
  • 7Li H, Qiu T, Cao Y, et al. Pre-staining paper chromatography method for quantification of gamma-aminobutyric acid [J]. J Chromatogr A, 2009, 1216 (25) :5 057-5 060.
  • 8Inoue Y, Ishii K, Miyazaki M, et al. Purification of L-glutamate decarboxylase from monkey brain [ J]. Biosci Bio- technol Biochem ,2008,72 ( 9 ) :2 269 - 2 276.
  • 9Shelp B J, Bown A W, Mclean M D. Metabolism and functions of gamma-aminobutyric acid [ J ]. Trends Plant Sci, 1999,4 ( 11 ) : 446 - 452.

二级参考文献17

  • 1Gilliland S E. Health and nutritional benefit from lactic acid bacteria [J]. FEMS Microbiology Reviews, 1990, 87: 175-188.
  • 2Arthur C O, Pirkka V K, Colette S, et al. Probioties: mechanisms and established effects [J]. International Dairy Journal, 1999, 9: 43-52.
  • 3Charteris W P, Kelly P M, Morelli L, et al. Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract [J]. Journal of Applied Microbiulugy, 1998,84 : 759-768.
  • 4Gardiner G, Ross R P, Collins J K, et al. Development of a probiotic cheddar cheese containing human-derived Lactobacillus paracasei strains [J]. Applied and Environmental Microbiology, 1998, 64: 2192-2199.
  • 5Zarate G, Chaia A P, Gonzalez S, et al. Viability and beta-galactosidase activity of dairy propionibacteria subjected to digestion by artificial gastric and intestinal fluids [J]. Journal of Food Protection, 2000, 63: 1214-1221.
  • 6Charalampopoulos D, Pandiella S S, Webb C. Evaluation of the effect of malt, wheat, and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions [J]. International Journal of Food Microbiology, 2002,82 : 133-141.
  • 7Patel H M, Pandiella S S, Wang R H, etal. Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli [J]. Food Microbiology, 2004,21: 83-89.
  • 8Michida H, Tamalampudi S, Pandiella S S, et al. Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions [J]. Biochemical Engineering Journal, 2006, 28 : 73-78.
  • 9Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytic Chemistry, 1956, 28 : 350-356.
  • 10Holzapfel W H, Haberer P, Snel J, et al. Overview of gut flora and probiotics [J]. International Journal of Food Microbiology, 1998,41: 85-101.

共引文献5

同被引文献55

  • 1Richard H, Foster JW. Escherichia coli glutamate-and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. The Journal of Bacteriology, 2004,186 ( 18 ) : 6032-6041.
  • 2Presser KA, Ratkowsky DA, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appled and Environmental Microbiology, 1997,63 ( 6 ) :2355-2360.
  • 3Lee K, Lee HG, Pi K, Choi YJ. The effect of low pH on protein expression by the probiotic bacterium Lactobacillus reuteri. Proteomics, 2008, 8 ( 8 ) : 1624-1630.
  • 4Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82 (1-4) : 187-216.
  • 5Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R , Weiss W . The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21 ( 6 ) : 1037-1053.
  • 6Sousa MC, McKay DB. Structure of the universal stress protein of Haemophilus influenzae. Structure, 2001, 9 (12) :1135-1141.
  • 7Persson O ,Valadi A, Nystr? m T, Farewell A. Metabolic control of the Escherichia coli universal stress protein response through fructose-6-phosphate. Molecular Microbiology ,2007,65 (4) :968-978.
  • 8Shih C J, Lai MC. Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis. Canadian Journal of Microbiology,2010,56 (4) :295-307.
  • 9Bouchal P, Struharova I, Budinska E, Sedo O, Vyhlidalova T, Zdrahal Z, van Spanning R, Kucera I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochimcal et Biophysica Acta, 2010, 1804 ( 6 ) : 1350- 1358.
  • 10Spaniol V, Troller R, Aebi C. Physiologic cold shock increases adherence of Moraxella catarrhalis to and secretion of interleukin 8 in human upper respiratory tract epithelial cells. The Journal of Infectious Diseases ,2009, 200 ( 10 ) : 1593 -1601,.

引证文献3

二级引证文献16

相关主题

;
使用帮助 返回顶部