期刊文献+

A Type of General Forward-Backward Stochastic Differential Equations and Applications 被引量:4

A Type of General Forward-Backward Stochastic Differential Equations and Applications
原文传递
导出
摘要 The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations.The existence and uniqueness results of the general FBSDEs are obtained.In the framework of the general FBSDEs in this paper,the explicit form of the optimal control for linear-quadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.
作者 Li CHEN Zhen WU
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第2期279-292,共14页 数学年刊(B辑英文版)
基金 Project supported by the 973 National Basic Research Program of China (No. 2007CB814904) the National Natural Science Foundations of China (No. 10921101) the Shandong Provincial Natural Science Foundation of China (No. 2008BS01024) the Science Fund for Distinguished Young Scholars of Shandong Province (No. JQ200801) the Shandong University Science Fund for Distinguished Young Scholars(No. 2009JQ004)
关键词 Stochastic delayed differential equations Anticipated backward stochastic differential equations Forward-backward stochastic differential equations Linear-quadratic stochastic optimal control with delay Nonzero sum stochastic differential game with delay 正倒向随机微分方程 应用类 最优控制问题 随机延迟 向前方程 向后方程 微分对策 均衡点
  • 相关文献

参考文献2

二级参考文献14

  • 1Y. Hu, and S. Peng, Solution of forward-backward stochastic differential equations, Proba. Theory and Related Fields, 1995, 103: 273-283.
  • 2S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825-843.
  • 3J. Yong, Finding adapted solution of forward backward stochastic differential equations-method of continuation, Proba Theory and Related Fields, 1997, 107: 537-572.
  • 4W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control Optim., 1968,6: 312-326.
  • 5J. M. Bismut, Controle des systemes lineaires quadratiques: applications de l'integrale stochastique, Lecture Notes in Mathematics, vol.649, Seminaire de Probabilites XII, Proceedings, Strasbourg, 1976-1977, Edite par C. Dellacherie, P. A. Meyer et M. Weil, Springer-Verlag, 1978, 180-264.
  • 6S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim. 1998, 36: 1685-1702.
  • 7S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,Stochastic Processes and Their Applications, 2000, 88: 259-290.
  • 8A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • 9A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux differentiels a Npersonnes, SIAM J. Control, 1974, 12(3).
  • 10T. Eisele, Nonexistence and nonuniqueness of open-loop equilibria in linear-quadratic differential games, J. Math. Anal. Appl., 1982, 37: 443-468.

共引文献31

同被引文献6

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部