摘要
Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis. Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis. The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined. In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed. Immunohistochemistry was performed to measure neuronal survival. Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.
Excitatory amino acid toxicity and free radical damage play important roles in amyotrophic lateral sclerosis. Granulocyte colony-stimulating factor (G-CSF) protects nerve cells exposed to high-concentrations of glutamic acid, suggesting positive effects in the treatment of amyotrophic lateral sclerosis. The present study induced in vitro motor neuron injury using glutamic acid excitotoxicity, and the biochemical effects of G-CSF on glutamic acid concentration were determined. In addition, the effects of G-CSF on superoxide dismutase, glutathione peroxidase activity in motor neurons, and malondialdehyde and nitric oxide contents were analyzed. Immunohistochemistry was performed to measure neuronal survival. Results revealed that G-CSF significantly suppressed free radical activity, inhibited excitotoxicity, and reduced apoptosis and loss of motor neurons in the anterior horn of the spinal cord.