期刊文献+

EGO算法的翼型气动外形优化设计 被引量:2

Airfoil shape optimization based on efficient global optimization
下载PDF
导出
摘要 针对随机优化算法计算量大和最优响应面法容易陷入局部最优的缺点,采用EI最优策略综合平衡响应预测值及预测精度,建立了高效的优化系统.使用该方法进行了翼型气动外形优化设计,结果表明该方法将翼型阻力系数降低22%,具有良好的优化精度,而总计算耗时与粒子群算法相比约降低68%,说明了该方法的可行性和有效性. To solve the problem that the random optimization method costs huge calculation and the best response method tends to get a weak local optimization, an effective optimization algorithm is built in this paper, which use best expected improvement(EI) strategy to balance response value and response precision. Tests of airfoil shape optimization indicate that the drag coefficient is reduced by 22% and the calculation time is reduced by 68% comparing with that of the particle swarm optimization, which shows that this effective optimization algorithm is realizable and effective.
作者 侯成义
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第3期137-139,共3页 Journal of Harbin Institute of Technology
关键词 粒子群优化算法 代理模型 翼型 数值模拟 EGO particle swarm optimization surrogate model airfoils numerical simulation efficient global optimization
  • 相关文献

参考文献9

  • 1DUVIGNEAU R, VISONNEAU M. Hybrid genetic algo- rithms and neural networks for fast CFD-based design [ R]. Atlanta: AIAA 2002 - 5465, 2002.
  • 2RAJAGOPAL S, GANGULI R. Muhidisciplinary design optimization of an UAV wing using kriging based multi-ob- jective genetic algorithm[R]. AIAA 2009 -2219, 2009.
  • 3JONES D L. A taxonomy of global optimization methods based on response surfaces [ J ]. Journal of Global Opti- mization, 2001, 21 (4): 345-383.
  • 4SCHONLAU M. Computer experiments and global opti- mizationf D]. Ontario Canada: Waterloo, 1997.
  • 5王红涛,竺晓程,杜朝辉.基于Kriging代理模型的改进EGO算法研究[J].工程设计学报,2009,16(4):266-270. 被引量:14
  • 6苏伟,高正红,夏露.一种代理遗传算法及其在气动优化设计中的应用[J].西北工业大学学报,2008,26(3):303-307. 被引量:11
  • 7KENNEDY J, EBERftART R C. Particle swarm optimi- zation [ C ]//Proceedings of IEEE International Confer- ence on Neural Networks. Washington, DC: IEEE Serv- ice Center, 1995: 1942- 1948.
  • 8CRESSIE N A C. Statistics for spatial data[ M]. New York: John Wiley & Sons, 1993.
  • 9HICKS R M, HENNE P A. Wing design by numerical optimization[ J]. Journal of Aircraft, 1978, 15 (7) : 407-413.

二级参考文献16

  • 1刘克龙,姚卫星,穆雪峰.基于Kriging代理模型的结构形状优化方法研究[J].计算力学学报,2006,23(3):344-347. 被引量:34
  • 2SIMPSON T W, PEPLINSK J D, KOCH P N. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering with Computers, 2001,17(2):129-150.
  • 3JONES D L. A taxonomy of global optimization methods based on response surfaces [J]. Journal of Global Optimization, 2001, 21 (4) : 345-383.
  • 4SCHONLAU M. Computer experiments and global optimization[D]. Waterloo: University of Waterloo, 1997.
  • 5KEANE A J. Statistical improvement criteria for use in multi-objective design optimization [J]. AIAA Journal, 2006,44(4) :879-891.
  • 6XU Y, LI G, WU Z. A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move [J]. Applied Artificiel Intelligence,2001,15(7) :601-631.
  • 7LOACTELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1) :57-76.
  • 8SASENA M J. Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations[D]. Ann Arbor: University of Michigan, 2002.
  • 9DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/4):311-338.
  • 10WANG G, DONG Z, AITCHISON P. Adaptive response surface method-a global optimization scheme for computation-intensive design problems[J]. Journal of Engineering Optimization, 2001, 33(6):707-734.

共引文献23

同被引文献29

  • 1Kirkpatrick S, Gellat J R, Vecchi M P. Optimization by simulated annealing[ J ]. Science, 1983,220 (4598) :671 - 680.
  • 2Forrester A I J, Keane A J. Recent advances in surrogate-based optimization[ J ]. Progress in Aerospace Sciences,2009,45 (1 - 3) :50 -79.
  • 3Qin N, Wong W S, Le Moigne A. Three-dimensional contour bumps for transonic wing drag reduction [ J ]. Proceedings of the I MECH E Part G Journal of Aerospace Engineering,2008,222 ( 5 ) :619 - 629.
  • 4Simpson T W, Toropov V, Balabanov V, et al. Design and analysis of computer experiments in muhidisciplinary design optimization: A review of how we have come-or not [ C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Colombia, 2008 : 1 - 21.
  • 5Jones D, Schonlau M, Welch W. Efficient global optimization of expensive black-box functions[ J]. Journal of Global Optimization, 1998,13 (4) :455 - 492.
  • 6Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments [ J ]. Statistical Science, 1989,4 (4) :409 -23.
  • 7ToM D, Bressloff N, Keane A. Kriging hyperparameter tuning strategies [ J ]. AIAA Journal ,2008,46 ( 5 ) : 1240 - 1252.
  • 8Toal D J J,Bressloff N W,Keane A J,et al. The development of a hybridized particle swarm for kriging hyperparameter tuning [ J ]. Engineering Optimization ,2011,43 ( 6 ) : 1 - 28.
  • 9Laurenceau J, Meaux M, Montagnac M, et al. Comparison of gradient-based and gradient-enhanced response-surface-based optimizers[ J]. AIAA Journal,2010,48(5 ) :981 - 994.
  • 10Krige D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [ J ]. Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1951,52 (6) : 119 - 139.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部