期刊文献+

一种新的车道线快速识别算法 被引量:6

Novel algorithm of fast lane identification
下载PDF
导出
摘要 针对现有的的车道线识别算法在复杂环境下识别率低、鲁棒性和实时性较差的问题,提出了一种基于形态学多结构元素建模的车道线快速识别算法。该算法首先对车道图像进行感兴趣区域提取,通过Canny算子对感兴趣区域进行边缘检测;然后利用具有车道模型特征的多结构元素进行车道线提取、霍夫变换,以及峰值检测点参数的筛选,从而得到实际车道左右标志线的参数以重建原车道线。仿真实验表明,该算法能在多种复杂环境下快速、准确地识别出车道标志线,且鲁棒性高。 The existing lane recognition algorithms have low recognition ratio,bad robustness and real-time,for overcoming these drawbacks,this paper proposed a fast algorithm of lane recognition based on multi-structure elements model of morphological.In the algorithm,extracted the interested area from original image,which detected by the operator of Canny.After that,extracted the lanes by the structure elements,which had similar characteristics to that of lane model.Detected several lines by Hough transformation,and choose the parameters to reconstruct the traffic lane.Experiments show that this algorithm is simple,has better robustness,and at the same time,can efficiently detect the lane mask accurately and quickly.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1544-1546,1550,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60962004) 甘肃省科技攻关计划项目(0708GKCA047)
关键词 感兴趣区域 车道线检测 霍夫变换 鲁棒性 interested area traffic lane detection Hough transformation robustness
  • 引文网络
  • 相关文献

参考文献13

  • 1FANG Ya-jun, MASAK I, HORN B. Depttl-based target seonentation for intelligent vehicles: fusion of radar and binoeular stereo[ J]. IEEE Trans on Intelligent Transportation Systems,2002,3 ( 3 ) : 196- 202.
  • 2LI Qing, ZHENG Nan-ning, CHENG Hong. A prototype autonomous vehicle mid its algorithms for lane detecetiorl[J]. IEEE Trans on Intelligent Transportation Systems,2004,5(4) :300-308.
  • 3K|M Z W. Robust lane detection and tracking in challenglng scenarios [J]. IEEE Trans on Intelligent Transportation Systems,2008,9 (l) :16-26.
  • 4DANESU R, NEDVSCHI S. Probabilistic lane tracking in difficult road scenarios using stereovision [ J ]. IEEE Trans on Intelligent Transportation Systems, 2009,10 (2) :272- 282.
  • 5GREGOR R, LUTZLER M. A perceptual system for autonomous vehicles[ J ]. IEEE Trans on Intelligent Transportation Systems, :2002,3( 1 ) :49-59.
  • 6JEONG P, NEDEVSCHI S. Efficient and robust classification method using combined feature vector for lane detection[J]. IEEE Trans on Circuits and Systems for Video Technology, 2005,15 ( 4 ) : 528- 537.
  • 7CHENG H Y, YU C C, TSENG C C, et al. Environment classification and hierarchical lane detection for structured and unstructuredroads[J], lET Computer Vision,2010,4( 1 ) :37-49.
  • 8SATZODA R K, SATHYANARyNA S, SRIKANTHAN T. Hierarchical additive Hough transform for lane detection [ J ]. IEEE Embedded Systems Letters,2010,2(2):23-26.
  • 9徐友春,王荣本,李克强,赵玉凡.一种基于直线模型的道路识别算法研究[J].中国图象图形学报(A辑),2004,9(7):858-864. 被引量:42
  • 10雷涛,樊养余,王小鹏,王履程.基于形态学结构元素建模的车道线检测算法[J].计算机应用,2009,29(2):440-443. 被引量:21

二级参考文献5

  • 1徐友春,王荣本,李克强,赵玉凡.一种基于直线模型的道路识别算法研究[J].中国图象图形学报(A辑),2004,9(7):858-864. 被引量:42
  • 2Serge B, Michel B. Road segmentation and obstacle detection by a fast watershed transform [A ]. In: Proceedings of the Intelligent Vehicles '94 Symposium [C], Paris, France, 1994:296-301.
  • 3Kluge K, Lakshmanan S. A deformable template approach to lane detection [A ]. In: Proceedings of IEEE Intelligent Vehicle'95[C], Detroit, MI, USA, 1995:54-59.
  • 4Grimmer D, Lakshmanan S A. deformable template approach to detecting straight edges in radar images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence[J]. 1996,18(4):438-443.
  • 5徐友春,王荣本,纪寿文.智能车辆视野及其图像变形矫正的研究[J].公路交通科技,2000,17(5):76-80. 被引量:15

共引文献61

同被引文献49

引证文献6

二级引证文献28

;
使用帮助 返回顶部