期刊文献+

SnO_2/TiO_2复合纳米纤维的制备及光催化性能 被引量:30

Fabrication and Enhanced Photocatalytic Properties of Heterostructures SnO_2/TiO_2 Composite Nanofibers
下载PDF
导出
摘要 采用静电纺丝技术,以聚乙烯吡咯烷酮和钛酸正丁酯为前驱体,制得锐钛矿相TiO2纳米纤维,并以此为模板,采用水热方法制备了具有异质结构的SnO2/TiO2复合纳米纤维.利用扫描电子显微镜(SEM)、X射线能量色散光谱(EDS)、透射电子显微镜(TEM)和X射线衍射(XRD)等分析测试手段对产物形貌和结构进行了表征.结果表明,SnO2纳米粒子均匀地生长在TiO2纳米纤维表面,形成了异质结构的SnO2/TiO2复合纳米纤维.通过改变反应物浓度,能有效地实现SnO2/TiO2复合纳米纤维的可控合成.以罗丹明B为模拟污染物,考察了SnO2/TiO2复合纳米纤维的光催化性能,结果表明,该复合纳米纤维的光催化活性明显高于纯TiO2纳米纤维,初步探讨了光催化反应机理. Heterostructured SnO2/TiO2 composite nanofibers were prepared via electrospinning fabrication of anatase nanofibers by adopting polyvinylpyrrolidone(PVP) and n-butyl titanate as precursors and hydrothermal growth of SnO2 nanostructures on anatase nanofibers substrate.The morphology and structure of SnO2/TiO2 composite nanofibers were characterized by scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDX),transmission electron microscopy(TEM) and X-ray diffraction(XRD) analysis.The results showed that SnO2 nanoparticles could evenly grow on the TiO2 nanofibers surface and thus heterostructured SnO2/TiO2composite materials were successfully obtained.By employing rhodamine B degradation as the model reaction,the SnO2/TiO2 heterostructures showed enhanced photocatalytic efficiency compared with the bare TiO2nanofibers under UV light irradiation.The mechanism for the enhancement of photocatalytic activity of heterostructured nanofibers was also discussed.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2011年第4期822-827,共6页 Chemical Journal of Chinese Universities
基金 教育部新世纪优秀人才支持计划(批准号:NCET-05-0322) 国家自然科学基金(批准号:50572014 50972027)资助
关键词 SnO2/TiO2复合纳米纤维 静电纺丝技术 水热方法 可控合成 光催化性能 SnO2/TiO2 composite nanofiber Electrospinning technique Hydrothermal method Controlled synthesis Photocatalytic property
  • 相关文献

参考文献22

  • 1Fujishima A. , Honda K.. Nature[J].1972, 238(5358): 37-38.
  • 2Chen X. , MaoS. S.. Chem. Rev.[J]. 2007, 107(7): 2891-2959.
  • 3Thompson T. L. , Yates J. T. Jr.. Chem. Rev. [J].2006, 106(10) : 4428-4453.
  • 4Vinodgopal K. , Bedja 1. , Karnat P. V.. Chem. Mater. [J]. 1996, 8(8) : 2180-2187.
  • 5Chen S. F. ,Chen L. , Gao S. , Cao G. Y.. Mater. Chem. Phys. [J].2006, 98(1) : 116-120.
  • 6YU Zhi-Hui, XIE Jia, XIA Ding-Guo. Chem. J. Chinese Universities I J l, 2008, 29(6) : 1190-1194.
  • 7Fujishima A. , Zhang X. T. , Tryk D. A.. Surf. Sci. Rep. [J]. 2008, 63(12) : 515-582.
  • 8WANG Chuan-Yi, LIU Chun-Yan, SHEN Tao. Ch J. Chi Universities [J]. 1998, 19(12) : 2013-2019.
  • 9Shan Z. , Wu J. , Xu F. , Huang F. , Ding H.. Phys. Chem. C[J]. 2008, 112(39) : 15423-15428.
  • 10Buso D. , Paeifieo J. , Martucci A. , Mulvaney P.. Adv. Funet. Mater. [J]. 2007, 17(3) : 347-354.

同被引文献560

引证文献30

二级引证文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部