期刊文献+

DEM Production/Updating Based on Environmental Variables Modeling and Conflation of Data Sources 被引量:1

DEM Production/Updating Based on Environmental Variables Modeling and Conflation of Data Sources
下载PDF
导出
摘要 Availability of digital elevation models (DEMs) of a high quality is becoming more and more important in spatial studies. Standard methods for DEM creation use only intentionally acquired data sources. Two approaches which employ various types of data sets for DEM production are proposed: (1) Method of weighted sum of different data sources with morphological enhancement that conflates any additional data sources to principal DEM, and (2) DEM updating methods of modeling absolute and relative temporal changes, considering landslides, earthquakes, quarries, watererosion, building and highway constructions, etc. Spatial modeling of environmental variables concerning both approaches for (a) quality control of data sources, considering regions, (b) pre-processing of data sources, and (c) processing of the final DEM, have been applied. The variables are called rate of karst, morphologic roughness (modeled from slope, profile curvature and elevation), characteristic features, rate of forestation, hydrological network, and rate of urbanization. Only the variables evidenced as significant were used in spatial modeling to generate homogeneous regions in spatial modeling a-c. The production process uses different regions to define high quality conflation of data sources to the final DEM. The methodology had been confirmed by case studies. The result is an overall high quality DEM with various well-known parameters.
出处 《Journal of Civil Engineering and Architecture》 2010年第11期33-44,共12页 土木工程与建筑(英文版)
关键词 Digital elevation/terrain model environmental variables data quality data conflation/integration spatial modeling. 数字高程模型 数据来源 建模方法 环境变量 模型制作 空间环境模拟 生产过程 数据源
  • 相关文献

参考文献11

  • 1C. Briese, G. Mandlburger and N. Pfeifer, Airborne laser scanning - high quality digital terrain modelling, geo-sibir, in: Ⅲ International Scientific Congress, Novosibirsk, Russia, 2007, pp. 79-92.
  • 2P. A. Burrough and R. A. McDonnell, Principles of Geographical Systems Information Systems, Spatial Information Systems and Geostatistics, Oxford University Press, Oxford, 1998.
  • 3T. Podobnikar, Production of integrated digital terrain model from multiple datasets of different quality, International Journal of Geographical Information Science 19 (2005) 69-89.
  • 4T. Podobnikar, Methods for visual quality assessment of adigital terrain model, S.A.P.I.EN.S 2 (2009) 20.
  • 5T. Podobnikar, M. SchOner, J. Jansa and N. Pfeifer, Spatial analysis of anthropogenic impact on karst geomorphology (Slovenia), Environmental Geology 58 (2009) 257-268.
  • 6T. Podobnikar and K. Ogtir, Spatial variables modelling for high quality D:YM production, Digital Earth: Information Resources for Global Sustainability, Brno, Czech Republic, 21-25 Sep., 2003, pp. 599-610.
  • 7R. Vezo~nik, T. AmbroZic, O. Sterle, G. Bilban, N. Pteller and B. Stopar, Use of terrestrial laser scanning technology for long term high precision deformation monitoring, Sensors 9 (2009) 9873-9895.
  • 8S. Vogt, Knowledge-based metadata processing in an antarctic spatial decision support system, in: International Workshop on Geo-Spatial Knowledge Processing for Natural Resource Management, Varese, ltaly, 2001, pp.189-192.
  • 9L. A. Zadeh, Foreword in Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems, New York, 1980.
  • 10A. Z~.molyi, B. Sz6kely, G. Molnbr, A. Roncat, P. Dorninger, A. Pocsai, M. Wyszyfiski and P. Drexel, Comparison of LiDAR-derived directional topographic features with geologic field evidence: A case study of Doren landslide (Vorarlberg, Austria), Geophysical Research Abstracts, EGU General Assembly, 2010, pp. EGU2010-9875.

同被引文献13

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部