期刊文献+

基于自动提取对应点的颅脑CT图像配准

Non-rigid Registration of CT Brain Images Based on Matching Corresponding Landmarks
下载PDF
导出
摘要 研究医学图像的应用问题,针对传统的基于特征点驱动的医学图像配准需要专业医师首先找出配对的特征点,这种巨大的工作量往往会导致一些错误。在医疗中为达到配准精确要求,提出了一种全自动的特征点驱动的医学颅脑CT图像配准方法,采用SIFT和形状因子来产生配对的特征点,并构成特征点的局部和区域特征向量,后用薄板样条插值(TPS)方法实施两幅图像的配准。仿真结果表明,在保证配准精度的基础上显著提高了算法的速度。 There are two categories of image registration algorithms: one is based on matching corresponding landmarks and the other is based on matching intensity information.The traditional landmarks-based image registration must ask professional medical image doctor to found corresponding landmarks for registration,and its heavy workload always leads to some errors.This former is used in registration of brain CT slices in this paper.Firstly,the SIFT algorithm and shape factor are used to produce landmarks.Then,a primary data set which includes both the local and global feature vectors is constructed by using these landmarks.Finally,the registration is carried out on the data set by thin-plate spline(TPS) interpolation.Simulation showed that the proposed method accelerates the registration procedure obviously.
出处 《计算机仿真》 CSCD 北大核心 2011年第5期279-282,共4页 Computer Simulation
基金 国家自然科学基金(60771007)
关键词 医学图像配准 形状因子 薄板样条插值 Medical image registration Shape factor Thin-plate spline interpolation
  • 相关文献

参考文献9

  • 1D G I.owe. Distinctive Image Features from Scale-Invariant Key- points[ J ]. International Journal on Computer Vision, 2004,60 (2) : 91-110.
  • 2H J Johnson. Consistent Landmark and Intensity-Based Image Registration. [J]. IEEE Tranactions on Medical Imaging, 2002, 21 (5) :450-461.
  • 3F L Bookstein. The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics [ M ]. New York: Spriger-Verlag, 1978,24.
  • 4隋美蓉,胡俊峰,唐鹤云,巩萍.医学图像配准方法及其应用[J].临床医学工程,2009,16(5):96-97. 被引量:7
  • 5刘琼,倪国强,周生兵.图像配准中几种特征点提取方法的分析与实验[J].光学技术,2007,33(1):62-64. 被引量:19
  • 6Martin Urschler, et al. SIFT and Shape Context for Feature-Based Nonlinear Registration of Thoracic CT Images [ J ]. Computer Vi- sion Approaches to Medical Image Analysis, 2006,4241:73-84.
  • 7M A Fischler, R C Bolles. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[ Z ]. Communications of ACM, 1981,24 ( 6 ) : 381 - 395.
  • 8F L Bookstein. Linear methods for nonlinear maps: Procrustes fits, thin- plate splines, and the biometric analysis of shape variability. in Brain Warping[ Z]. A. Toga, Ed. San Diego, CA: Academic, 1999. 157-181.
  • 9Fred L Bookstein. Morphometric Tools for Landmark Data [ M ]. New York: Cambridge Univ. Press, 1991.

二级参考文献5

  • 1陈跃,黄占文.SPECT-CT的临床应用进展[J].国际放射医学核医学杂志,2006,30(5):280-282. 被引量:6
  • 2艾海舟.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2003..
  • 3Chen C H,Lee J S,Sun Y N.Wavelet transformation for gray-level corner detection[J].Pattern Recognition,1995,28(6):853-861.
  • 4Smith S M,Brady J M.SUSAN-A new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78.
  • 5Jung K,Lacroix S.A robust interest points matching algorithm[C].Proceedings of Eighth IEEE International Conference on Computer Vision,2001.538-543.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部