期刊文献+

SEVERAL WEAK-TYPE WEIGHTED INEQUALITIES IN ORLICZ MARTINGALE CLASSES 被引量:3

SEVERAL WEAK-TYPE WEIGHTED INEQUALITIES IN ORLICZ MARTINGALE CLASSES
下载PDF
导出
摘要 The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights. The aim of this paper is to establish several necessary and sufficient conditions in order that the weighted inequality ρ(M f 〉 λ)Φ(λ) ≤ C ∫_Ω~Ψ (C|f|)σdμ,λ 〉 0 or ρ(Mf〉λ) ≤ C∫-Ω~Φ(Cλ^-1 |f|)σdμ,λ 〉0 holds for every uniformly integral martingale f=(f_n), where M is the Doob's maximal operator, Φ, Ψ are both Φ-functions, and e, σ are weights.
作者 陈伟 刘培德
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期1041-1050,共10页 数学物理学报(B辑英文版)
基金 Supported by the National Natural Science Foundation of China (10671147 11071190)
关键词 martingale space maximal operator weighted inequality Orlicz norm martingale space maximal operator weighted inequality Orlicz norm
  • 相关文献

参考文献1

二级参考文献9

  • 1Neugebauer CJ. On tile Hardy-Littlewood maximal function and some applications. Trans Amer MathSoc, 1980, 259:225-241.
  • 2Cruz-Uribe D, SFO, Neugebauer C J. The structure of the reverse Holder classes. Trans Amer Math Soc,1995, 847:2941-2960.
  • 3Cruz-Uribe D, SFO, Neugebauer C J, Olesen V. Norm inequalities for the minimal operator and maximal operator, and differentiation of the integral. Publ Mat, 1997, 41:577-604.
  • 4Cruz-Uribe D, SFO, Neugebauer C J. Weighted norm inequalities for the geometric maximal operator.Publ Mat, 1998, 42:239-263.
  • 5Saeyer E, A characterization of a two weight norm inequalities for maximal operators. Studia Mathematica,1982, 75:1-11.
  • 6Lcckband M A, Ncugebauer C J. A general maximal operator and the (Ap) condition. Trans Amer Math Soc, 1983, 275(2): 821-831.
  • 7Long R L, Peng L Z, Two-weight inequalities oil maximal operator in martingale settings. Acta Math Sinica, 1986, 29:253-257.
  • 8Long R L. Martingale spaces and Inequalities. Beijing: Peiking University Press, 1993.
  • 9Stein E M. Singular Integrals and Differentiability Properties of the Functions. Preceton, N J: Princeton Univ Press, 1970.

共引文献2

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部