摘要
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the particle displacements in the simulation model of electromagnetic acoustic transducer (EMAT),a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process.The multi-field coupled model included the static magnetic field,pulsed eddy current field and mechanical field.The FEM equations of the three fields were derived by Garlerkin FEM method.Thus,the entire transduction process of the EMAT was calculated through sequentially coupling the three fields.The transduction process of a Lamb wave EMAT was calculated according to the present model and method.The results show that,by the present method,it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field.Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected.
基金
Project(10974115) supported by the National Natural Science Foundation of China