期刊文献+

基于相应簇回声状态网络静态分类方法 被引量:8

Echo State Networks for Static Classification with Corresponding Clusters
下载PDF
导出
摘要 借鉴模仿哺乳动物大脑皮层分簇结构的复杂网络拓扑结构,提出一种基于相应簇储备池回声状态网络的分类方法.将时间窗函数机制引入到回声状态网络储备池的构建中,利用具体问题中需分类数据的类别数量,生成具有对应分簇数目的储备池,以期提高分类精度.基于标准数据集和模拟电路故障诊断的实验验证结果表明,本文方法与标准回声状态网络等方法相比具有更高的分类精度. A classification method using echo state networks(ESNs) with corresponding clusters is proposed,which is inspired by complex network topologies imitating cortical networks of the mammalian brain.The time windows functions are adopted to construct multiple-cluster reservoir.The number of clusters corresponds with the number of classes in specific classification problems to improve the classification accuracy.Experimental results based on the standard datasets and analog circuit fault diagnosis show that the proposed method outperforms the original echo state networks.
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第A03期14-18,共5页 Acta Electronica Sinica
基金 教育部高等学校博士学科点专项科研基金(No.20092302110013) 教育部新世纪优秀人才支持计划(No.NCET-10-0062)
关键词 回声状态网络 时间窗 模拟电路故障诊断 echo state networks time windows analog circuit fault diagnosis
  • 相关文献

参考文献10

  • 1Jaeger H. The "Echo State" Approach to Analysing and Training Recurrent Neural Networks[ R]. Bremen: German National Research Center for Information Technology,2001.
  • 2Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic system and saving energy in wireless communication[ J ]. Science,2004,304(5667) :78 - 80.
  • 3Skowronski M D, Harris J G. Automatic speech recognition using a predictive echo state network classifier[J]. Neural Networks, 2007,20(3) :414 - 423.
  • 4Ding Hai-yan, Pei Wenjiang, He Zhen-ya. A multiple objective optimization based echo state network tree and application to inmJsion detection[ A]. Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology[ C ]. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2005.443 - 446.
  • 5Alexandre L A, Embrechts M J, Linton J. Benchmarking reservoir computing on time independent classification tasks [ A ]. Proceedings of the International Joint Conference on Neural Networks[ C]. Piscataway: Institute of Electrical and Electronics Engineers Inc,2009.89- 93.
  • 6Nisbach F, Kaiser M. Developmental time windows for spatial growth generate multiple-cluster small-world networks[ J]. European Physical Journal B,2007,58(2):185- 191.
  • 7Jaeger H. Tutorial on training recurrent neural networks, covering BPPT,RTRL,EKF and the "echo state network" approach [R]. Bremen: German National Research Center for Information Technology, 2002.
  • 8Kaiser M, Hilgetag C C. Development of multi-cluster cortical networks by time windows for spatial growth [ J ]. Neurocomputing,2007,70(10 - 12) :1829 - 1832.
  • 9Song Qingsong, Feng Zuren. Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time sedes[J]. Neurocomputing, 2010,73( 10 - 12) : 2177 - 2185.
  • 10Aminian F, Aminian M, Collins H W. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2002,51 ( 3 ) : 544 - 550.

同被引文献54

  • 1Gudivada V N, Raghavan V V. Content-based Image Retrieval System [J]. IEEE Computer, 1995, 28(9): 18-22.
  • 2Smeulder A W M, Worring M, Santini S, et al. Content-based Image Retrieval at the End of the Early Years [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380.
  • 3Li J, Huang S, He R, et al. Image Classification Based on Fuzzy Support Vector Machine [C]. In: Proceedings of the 2008 International Symposium on Computational Intelligence and Design, Wuhan, China. 2008: 68-71.
  • 4Kundu M K, Chowdhury M. Image Retrieval Using NN Based Pre-classification and Fuzzy Relevance Feedback [C]. In: Proceedings of the 2010 Annual IEEE India Conference (INDICON), Kolkata, India. 2010: 1-4.
  • 5Manjunath B S, Ohm J R, Vasudevan V V, et al. Color and Texture Descriptors [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11 (6): 703-715.
  • 6Alexandre L A, Embrechts M J, Linton J. Benchmarking Reservoir Computing on Time-independent Classification Tasks [C]. In: Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA. 2009: 89-93.
  • 7Stricker M A, Orengo M. Similarity of Color Images [C]. In: Proceedings of the SPIE Storage and Retrieval for Image and Video Databases III, 1995: 381-392.
  • 8Haralick R M, Shangmugam K, Dinstein Its'Hak. Texture Feature for Image Classification [J]. IEEE Transactions onSystems, Man and Cybernetics, 1973, SMC-3(6): 610-621.
  • 9Gabor D. Theory of Communication [J]. IEE, 1946, 93(3): 429-457.
  • 10Jaeger H. The "Echo State" Approach to Analysing and Training Recurrent Neural Networks [R]. German National Reasearch Center for Information Technology, 2001.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部