期刊文献+

Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model 被引量:1

Determination of Non-Maxwellian Electron Energy Distributions in Low-Pressure Plasmas by Using the Optical Emission Spectroscopy and a Collisional-Radiative Model
下载PDF
导出
摘要 A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and kryp- ton atoms. For applications of this approach in reactive gas (CF4, O2, etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail. A Maxwellian electron energy distribution function (EEDF) is often assumed when using the optical emission line-ratio method to determine the electron temperature in low- temperature plasmas. However, in many cases, non-Maxwellian EEDFs can be formed due to the non-local electron heating or the inelastic-collisional energy loss processes. In this work, with a collisional-radiative model, we propose an approach to obtain the non-Maxwellian EEDF with a 'two-temperature structure' from the emission line-ratios of Paschen 2p levels of argon and kryp- ton atoms. For applications of this approach in reactive gas (CF4, O2, etc) discharges that contain argon and krypton, recommendations of some specific emission line-ratios are provided, according to their sensitivities to the EEDF variation. The kinetic processes of the relevant excited atoms are also discussed in detail.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第3期267-278,共12页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China (Nos. 11075093 and 10935006) and the China Postdoctoral Science Foundation (No. 20100480327)
关键词 plasma diagnostics optical emission spectroscopy non-Maxwellian EEDF collisional-radiative model plasma diagnostics, optical emission spectroscopy, non-Maxwellian EEDF,collisional-radiative model
  • 相关文献

参考文献51

  • 1Fantz U. 2006, Plasma Sources Sci. Technol., 15:S137.
  • 2Boffard J B, Lin C C, De Joseph C A. 2004, J. Phys. D: Appl. Phys., 37:R143.
  • 3Crolly G, Oechsner H. 2001, Eur. Phys. J. Appl. Phys., 15:49.
  • 4Pu Y K, Ren Y F, Yang S Z, et al. 2000, Surf. Coat. Technol., 131:470.
  • 5Kano K, Suzuki M, Akatsuka H. 2000, Plasma Sources Sci. Technol., 9:314.
  • 6Iordanova S, Koleva I. 2007, Spectrochim. Acta B, 62: 344.
  • 7Zhu X M, Pu Y K. 2008, Plasma Sources Sci. Technol., 17:024002.
  • 8Isola L M, Gomez B J, Guerra V. 2010, J. Phys. D: Appl. Phys., 43:015202.
  • 9Godyak V A. 2006, IEEE Trans. Plasma Sci., 34:755.
  • 10Donnelly V M. 2004, J. Phys. D: Appl. Phys., 37:R217.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部