期刊文献+

Discovery Studio 2.0的模块扩展及应用:残基水平非键相互作用能量的自动批量计算 被引量:8

An extension strategy of Discovery Studio 2.0 for non-bonded interaction energy automatic calculation at the residue level
下载PDF
导出
摘要 非键相互作用对于生物体系中的分子识别和结合过程起着关键作用。然而,传统的方法并不能在残基水平自动批量计算非键相互作用。近年来,已经发展了一些方法和工具进行非键相互作用的计算分析。该文研究发展了一种可以自动计算残基间非键相互作用的方法,即用Perl脚本调用Discovery Studio 2.0(DS 2.0,Accelrys Inc.)底层模块中的非键相互作用协议,实现了直接利用命令行批量计算非键相互作用能量,而无需通过DS2.0的图形界面。该方法扩展了DS2.0的计算模块,并于近期运用到了复合结构的研究分析中。 Non-bonded interaction forces play crucial roles in molecular recognition and binding in biological systems.However,it is difficult for traditional methods to automatically calculate and batch the non-bonded energy at the residue level.In recent years,many studies have focused on non-bonded interactions and developed tools to calculate and analyze such interactions.In this study,we present a highly automated approach for the calculation of non-bonded energy.Our strategy invoked protocols relevant to non-bonded interactions within Discovery Studio 2.0(DS2.0,Accelrys Inc.) bottom module using Perl script,and determined the direct command line operation of calculating non-bonded interaction energy batches without accessing the graphical interface of DS.This approach extended the DS2.0 module and was applied to a recent study of complex structure analysis.
出处 《Zoological Research》 CAS CSCD 北大核心 2011年第3期262-266,共5页 动物学研究(英文)
基金 国家重点基础研究发展计划项目"973"(2009CB941302) 国家自然科学基金项目(30470939 30623007) 中国科学院基金项目(2007211311091)
关键词 非键相互作用 模块扩展 DISCOVERY STUDIO 2.0 Non-bonded energy Protocol extension Discovery Studio 2.0
  • 相关文献

参考文献17

  • 1Ashenhurst JA.2010.Intermolecular oxidative cross-coupling of arenes [J].Chem Soc Rev,39(2):540-548.
  • 2Brooks BR,Bruccoleri RE,Olafson BD,States DJ,Swaminathan S,Karplus M.1983.CHARMM:A program for macromolecular energy,minimization,and dynamics calculations [J].J Comut Chem,4:187-217.
  • 3Hirashima A,Huang H.2008.Homology modeling,agonist binding site identification,and docking in octopamine receptor of Periplaneta americana [J].Comput Biol Chem,32(3):185-190.
  • 4McCullagh M,Prytkova T,Tonzani S,Winter ND,Schatz GC.2008.Modeling self-assembly processes driven by nonbonded interactions in soft materials [J].J Phys Chem B,112(34):10388-10398.
  • 5Nakashima H,Furukawa K,Kashimura Y,Torimitsu K.2008.Self-assembly of gold nanorods induced by intermolecular interactions of surface- anchored lipids [J].Langmuir,24(11):5654-5658.
  • 6Pyrkov TV,Ozerov IV,Blitskaia ED,Efremov RG.2010.Molecular docking:role of intermolecular contacts in formation of complexes of proteins with nucleotides and peptides [J].Bioorg Khim,36(4):482-492.
  • 7Sagui C,Darden TA.1999.Molecular dynamics simulations of biomolecules:long-range electrostatic effects [J].Annu Rev Biophys Biomol Struct,28:155-179.
  • 8Shuman S,Lima CD.2004.The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases [J].Curr Opin Struct Biol,14(6):757-764.
  • 9Spassov VZ,Yan L.2008.A fast and accurate computational approach to protein ionization [J].Protein Sci,17(11):1955-1970.
  • 10Spriggs S,Garyu L,Connor R,Summers MF.2008.Potential intra- and intermolecular interactions involving the unique-5' region of the HIV-1 5'-UTR [J].Biochemistry,47(49):13064-13073.

同被引文献38

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部