摘要
区域年用水量受众多因素影响,具有非线性特点,而且还存在记录时间短、历史数据少等问题。基于支持向量机(SVM)小样本、非线性和泛化能力强的特性,建立了年用水量回归预测模型,利用网格搜索法(GSM)优化参数,并进行精度的检验。将模型应用于民勤县年用水量预测,结果表明:该预测模型的绝对误差和相对误差较小,精度较高,用于该县的年用水量预测是行之有效的。
Regional annual water-consumed quantity is affected by a lot of factors and has nonlinear characteristic.There are shorter recording time,less historical data problems.we built a regression model for forecasting annual water-consumed quantity based on the small sample,nonlinear and generalization ability characteristics of support vector machine,and a grid search method was applied to optimize the parameters,and then the model's precision was tested.The model was used to forecast annual water-consumed quantity in Minqin.The result showed that the absolute error and the relative error were small,and the precision was high.It is feasible to forecast annual water-consumption quantity of the county.
出处
《沈阳农业大学学报》
CAS
CSCD
北大核心
2011年第2期238-240,共3页
Journal of Shenyang Agricultural University
基金
甘肃省自然科学基金项目(096RJZA004)
甘肃省教育厅科研基金项目(0902-04)
甘肃省科技支撑计划项目(1011NKCA058)
关键词
区域年用水量
支持向量机
网格搜索法
回归模型
预测
regional annual water-consumed quantity
support vector machine
grid search method
regression model
forecasting