期刊文献+

A first-principles study on elastic properties and stability of Ti_xV_(1-x)C multiple carbide 被引量:2

多组元碳化物Ti_xV_(1-x)C弹性性能与稳定性的第一性原理研究(英文)
下载PDF
导出
摘要 The structure,stability and elastic properties of di-transition-metal carbides TixV1-xC were investigated by using the first-principles with a pseudopotential plane-waves method.The results show that the equilibrium lattice constants of TixV1-xC show a nearly linear reduction with increasing addition of V.The elastic properties of TixV1-xC are varied by doping with V.The bulk modulus of Ti0.5V0.5C is larger than that of pure TiC,as well as Ti0.5V0.5C has the largest C44 among TixV1-xC(0≤x≤1),indicating that Ti0.5V0.5C has higher hardness than pure TiC.However,Ti0.5V0.5C presents brittleness based on the analysis of ductile/brittle behavior.The Ti0.5V0.5C carbide has the lowest formation energy,indicating that Ti0.5V0.5C is more stable than all other alloys. 采用基于密度泛函理论的第一性原理赝势平面波方法,研究过渡族多组元碳化物TixV1-xC的结构、稳定性及弹性性能。结果表明:TixV1-xC的晶格常数随着V的增多而线性递减;TiC晶体中掺杂V后导致力学性能发生变化;与TiC相比,Ti0.5V0.5C具有较大的体模量和最大的弹性系数C44,表明Ti0.5V0.5C具有比TiC高的硬度,但Ti0.5V0.5C的脆性最大;Ti0.5V0.5C具有最小的形成能,表明Ti0.5V0.5C最稳定。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1373-1377,共5页 中国有色金属学报(英文版)
基金 Project(Z2006F07)supported by Natural Science Foundation of Shandong Province,China
关键词 elastic properties TixV1-xC carbide the first-principles phase stability 弹性性能 TixV1-xC碳化物 第一性原理 相稳定性
  • 相关文献

参考文献19

  • 1王振廷,周晓辉,赵国刚.Microstructure and formation mechanism of in-situ TiC-TiB_2/Fe composite coating[J].中国有色金属学会会刊:英文版,2008,18(4):831-835. 被引量:6
  • 2S. Ramasubramanian,M. Rajagoplan,R. Thangavel,J. Kumar.Ab initio study on elastic and thermodynamical properties of Ti1-xZrxC[J]. The European Physical Journal B . 2009 (2)
  • 3S. P. Dodd,M. Cankurtaran,B. James.Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC[J]. Journal of Materials Science . 2003 (6)
  • 4MANSOUR R,,MAZIAR S Y,MOHAMMAD R R,SEYED S,RAZAVI T.The effect of production method on properties of Fe-TiC composite. International Journal of Mineral Processing . 2010
  • 5ZHOU,C T,XIAO B,FENG J,XING JD,XIE X J,CHEN Y H ETAL.First principles study on the elastic properties and electronic structures of(Fe,Cr)3C. Computational Materials Science . 2009
  • 6FERREIRA L G,WEI S H,ZUNGER A.Stability,electronic structure and phase diagrams of novel inter-semiconductor compounds. International Journal of Supercomputer Applications and High Performance Computing . 1991
  • 7AHUJA R,,ERIKSSON O,WILLS J M,JOHNSSON B.Structural,elastic,and high-pressure properties of cubic TiC,TiN,and TiO. Physical Review B Condensed Matter and Materials Physics . 1996
  • 8CLERC D G,LEDBETTER H M.Mechanical hardness:A semiempirical theory based on screened electrostatics and elastic shear. J Phs Chem Solid . 1998
  • 9CLERC D G,LEDBETTER H M.Mechanical hardness:A semiempirical theory based on screened electrostatics and elastic shear. J Phs Chem Solid . 1998
  • 10PUGH S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine . 1954

二级参考文献22

  • 1WANG Xiang, GAI Peng-tao. Effect of carbon content on microstructure and property of TiC/Ti-6Al-4V composites [J]. Trans Nonferrous Met Soc China, 2007, 17: s546-s550.
  • 2WU Wang-liang, SUN Jian-feng, DONG Sheng-min, LIU Rong-xiang. Influence of processing parameters on microstructure and wear resistance of Ti+TiC laser clad layer on titanium alloy [J]. Trans Nonferrous Met Soc China, 2006, 16: s2096-s2099.
  • 3ZHANG Er-lin, JIN Yun-xue, ZENG Song-yan, ZHU Zhao-jun. Microstructure of in-situ TiC particle reinforced titanium alloy matrix composites [J]. Trans Nonferrous Met Soc China, 2000, 6(10):764-768.
  • 4WANG H Y, HUANG L, JIANG Q C. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting [J]. Mater Sci Eng A, 2005, 407: 98-104.
  • 5YANG Ya-feng, WANG Hui-yuan. Fabrication of steel matrix composites locally reinforced with different ratios of TiC-TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting [J]. Mater Sci Eng A, 2007, 445/446: 398-404.
  • 6LOCCI A M, ORR U R, CAO G. Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC-TiB2 composites [J]. Mater Sci Eng A, 2006, 434: 23-29.
  • 7ZHAO Kun-yu, ZHU Xin- kun, CHENG Bao-chang, LIN Qiu-shi, ZHANG Xiu-qing CHEN Tie-li, SHU Yun-shen, YONG Qi-long. Synthesis of TiB2+TiC by mechanical alloying [J]. Trans Nonferrous Met Soc China, 2001, 11(1): 135-137,
  • 8LOCCI A M, ORR'U R, CAO G, MLrNIR Z A. Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites [J]. J Am Ceram Soc, 2006, 89: 848-855.
  • 9LEE J W, MUNIR Z A, OHYANAGI M. Dense nanocrystalline TiB2-TiC composites formed by field activation from high-energy ball milled reactants [J]. Mater Sci Eng A, 2002, 325: 221-227.
  • 10ZHANG Xing-hong, ZHU Chun-cheng, QU Wei-a. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic-matrix composites [J]. Composites Science and Technology, 2002, 62: 2037-2041.

共引文献5

同被引文献61

  • 1The Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook (vol.3): Aluminum alloy and magnesium alloy[M]. 2nd ed. Beijing: Standards Press of China, 2001: 148-167. (in Chinese).
  • 2ROSALES B M, IANNUZZI M. Aluminium AA2024 T351 aeronautical alloy. Part I: Microbial influenced corrosion analysis[J]. Mater Sci Eng A, 2008,472(1-2): 15-25.
  • 3WANG S B, CHEN J H, YIN M J, LIU Z R, YUAN D W, LIU J Z, LID C H, WU C L. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AICuMg alloys[J]. Acta Mater, 2012, 60(19): 6573-6580.
  • 4LIU Z R, CHEN J H, WANG S B, YUAN D W, YIN M J, WU C L. The structure and the properties of S-phase in AICuMg alloys[J]. Acta Mater, 2011, 59(19): 7396-7405.
  • 5RINGER S P, HONO K, POLMEAR I J, SAKURAI T. Precipitation processes during the early stages of ageing in AI-Cu-Mg alloys[J]. Appl Surf Sci, 1996,94-95: 253-260.
  • 6RINGER S P, HONO K, POLMEAR I J, SAKURAI T. Nucleation of precipitates in aged AICuMg(Ag) alloys with high Cu:Mg ratios[J]. Acta Mater, 1996,44(5): 1883-1898.
  • 7RINGER S P, SOFYAN B T, PRASAD K S, QUAN G C. Precipitation reactions in AI-4.0Cu-0.3Mg(wt.%) alloy[J]. Acta Mater, 2008, 56(9): 2147-2160.
  • 8SHA G, MARCEAU R K W, GAO X, MUDDLE B C, RINGER S P. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes[J]. Acta Mater, 2011, 59(4): 1659-1670.
  • 9KOVARIK L, COURT S A, FRASWE H L, MILLS M J. GPB zones and composite GPB/GPB II zones in AI-Cu-Mg alloys[J]. Acta Mater, 2008, 56(17): 4804-4815.
  • 10KOVARIK L, MILLS M J. Structural relationship between one-dimensional crystals of Guinier-Preston-Bagaryatsky zones in Al-Cu-Mg alloys[J]. Scripta Mater, 2011, 64(11): 999-1002.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部