期刊文献+

IMPROVED GAGLIARDO-NIRENBERG INEQUALITIES ON HEISENBERG TYPE GROUPS 被引量:1

IMPROVED GAGLIARDO-NIRENBERG INEQUALITIES ON HEISENBERG TYPE GROUPS
下载PDF
导出
摘要 Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type. Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type.
作者 罗光洲
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第4期1583-1590,共8页 数学物理学报(B辑英文版)
基金 supported by National Science Foundation of China (10771175)
关键词 Heisenberg type group heat kernel Sobolev inequality Galiardo-Nirenberg inequality Heisenberg type group heat kernel Sobolev inequality Galiardo-Nirenberg inequality
  • 相关文献

参考文献2

二级参考文献12

  • 1Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations, Ⅲ: Functions of the eigenvalues of the Hessian. Acta Math, 1985, 155:261-301.
  • 2Guan P, Wang G. Local estimates for a class of fully nonlinear equations arising from conformal geometry. Int Math Res Not, 2003, (26): 1413-1432.
  • 3Li A, Li Y Y. On some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2003, 56: 1416-1464.
  • 4Li A, Li Y Y. Private notes, 2003.
  • 5Li A, Li Y Y. On some conformally invariant fully nonlinear equations, Part Ⅱ: Liouville, Harnack and Yamabe. arXiv: math.AP/0403442 v1 25 Mar 2004.
  • 6Li A, Li Y Y. On some conformally invariant fully nonlinear equations, Part Ⅱ: Liouville, Harnack and Yamabe. Aeta Math, 2005, 195:117-154.
  • 7Li A, Li Y Y. A fully nonlinear version of the Yamabe problem on manifolds with boundary. J Eur Math Soc, 2006, 8:295-316.
  • 8Li Y Y. Local gradient estimates of solutions to some conformally invariant fully nonlinear equations. arXiv: math.AP/0605559; to appear in Comm Pure Appl Math.
  • 9Li Y Y, Zhang L. Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d'Analyse Mathematique, 2003, 90:27-87.
  • 10Schoen R. Courses at Stanford University, 1988, and New York University, 1989.

共引文献2

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部