摘要
Tensile properties of a Re-containing single crystal superalloy were determined within the temperature range from 20 to 1 100 ℃with a constant strain rate of 1.67 ×10^-4 s^-1.From room temperature to 600 ℃,the yield strength increases slightly with increasing temperature.The yield strength decreases to aminimum at 760 ℃,while a maximum is reached dramatically at 800 ℃.The elongation and area reduction decrease gradually from room temperature to 800 ℃.Above 800 ℃,the yield strength decreases significantly with increasing temperature.The γ' phase is sheared by antiphase boundary (APB) below 600 ℃while elongated SSF (superlattice stacking fault) is left in γ' as debris.At 760 ℃the γ' phase is sheared by a/3 112 superpartial dislocation,which causes decrease of yield strength due to low energy of SSF.Above 800 ℃dislocations overcome γ' through by-passing mechanism.
研究了一种含Re单晶高温合金在20~1100℃的拉伸性能。结果表明:在室温至600℃时合金屈服强度随温度的升高轻微增大,从600至760℃时合金屈服强度明显降低到一个极小值,到800℃时急剧增至最大值。从室温至800℃时伸长率和面缩率缓慢降低;在800℃以上时,屈服强度急速下降。在600℃以下时,γ′被反相畴界切割而在其中留下伸长的超晶格层错;在760℃时,γ′被a/3-112-位错切割,这是由于层错能降低而导致强度降低;当高于800℃时,位错以绕越机制通过γ′。
基金
Project(2010CB631206) supported by the National Basic Research Program of China
Project(50931004) supported by the National Natural Science Foundation of China