期刊文献+

A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters 被引量:1

A new artificial bee swarm algorithm for optimization of proton exchange membrane fuel cell model parameters
原文传递
导出
摘要 An appropriate mathematical model can help researchers to simulate,evaluate,and control a proton exchange membrane fuel cell (PEMFC) stack system.Because a PEMFC is a nonlinear and strongly coupled system,many assumptions and approximations are considered during modeling.Therefore,some differences are found between model results and the real performance of PEMFCs.To increase the precision of the models so that they can describe better the actual performance,opti-mization of PEMFC model parameters is essential.In this paper,an artificial bee swarm optimization algorithm,called ABSO,is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications.For studying the usefulness of the proposed algorithm,ABSO-based results are compared with the results from a genetic algo-rithm (GA) and particle swarm optimization (PSO).The results show that the ABSO algorithm outperforms the other algorithms. An appropriate mathematical model can help researchers to simulate, evaluate, and control a proton exchange membrane fuel cell (PEMFC) stack system. Because a PEMFC is a nonlinear and strongly coupled system, many assumptions and approximations are considered during modeling. Therefore, some differences are found between model results and the real performance of PEMFCs. To increase the precision of the models so that they can describe better the actual performance, opti- mization of PEMFC model parameters is essential. In this paper, an artificial bee swarm optimization algorithm, called ABSO, is proposed for optimizing the parameters of a steady-state PEMFC stack model suitable for electrical engineering applications. For studying the usefulness of the proposed algorithm, ABSO-based results are compared with the results from a genetic algo- rithm (GA) and particle swarm optimization (PSO). The results show that the ABSO algorithm outperforms the other algorithms.
出处 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期638-646,共9页 浙江大学学报C辑(计算机与电子(英文版)
基金 supported by the Renewable Energy Organization of Iran (SANA)
关键词 Proton exchange membrane fuel cell stack model Parameter optimization Artificial bee swarm optimization algorithm Proton exchange membrane fuel cell stack model, Parameter optimization, Artificial bee swarm optimization algorithm
  • 相关文献

参考文献15

  • 1Akbari, R., Mohammadi, A., Ziarati, K., 2010. A novel bee swarm optimization algorithm for numerical function optimization. Commun. Nonl. Sci. Numer. Simul., 15(10): 3142-3155. [doi:10.1016/j.cnsns.2009,11.003].
  • 2Bernardi, D.M., Verbrugge, M.W., 1992. A mathematical model of the solid-polymer-electrolyte fuel-cell. J. Elec- trochem. Soc., 139(9):2477-2491. [doi:10.1149/1.2221 2511.
  • 3Corr6a, J.M., Farret, F.A., Canha, L.N., Sim6es, M.G., 2004. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans. Ind. Electr., 51(5):1103-1112. [doi:10.1109/YlE.2004. 834972].
  • 4Fuller, T,F., Newman, J., 1993. Water and thermal manage- ment in solid-polymer-electrolyte fuel-cells. J. Electro- chem. Soc., 140(5):1218-1225. [doi:10.1149/1.2220960].
  • 5Jia, J., Li, Q., Wang, Y., Cham, Y.T., Han, M., 2009. Model- ing and dynamic characteristic simulation of a proton exchange membrane fuel cell. IEEE Trans. Energy Conv., 24(1):283-291. [doi:10.1109/TEC.2008.2011837].
  • 6Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. 31 Glob. Optim., 39(3): 459-471. [doi:lO.1007/slO898-OOT-9149-x].
  • 7Mann, R.F., Amphlett, J.C., Hooper, M.A.I., Jensen, H.M., Peppley, B.A., Roberge, P.R., 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. J. Power Sources, 86(1-2): 173-180. [doi: 10.1016/SO378-7753(99)OO484-X].
  • 8Mo, Z.J., Zhu, X.J., Wei, L.Y., Cao, G.Y., 2006. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. Int. J. Energy Res., 30(8):585-597. [doi:10. 1002/er. 1170].
  • 9Nguyen, T.V., White, R.E., 1993. A water and heat manage- ment model for proton-exchange-membrane fuel-cells. 7. Electrochem. Soc., 140(8):2178-2186. [doi:10.1149/1. 22207921.
  • 10Ohenoja, M., Leiviska, K., 2010. Validation of genetic algo- rithm results in a fuel cell model. Int. J. Hydr. Energy, 35(22):12618-12625. [doi:10.1016/j.ijhydene.2010.07. 1291.

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部