期刊文献+

三种经典复杂网络社区结构划分算法研究 被引量:8

The Research of Three Typical Community Detection Algorithms in Complex Networks
下载PDF
导出
摘要 社团结构是复杂网络的重要特征之一。针对复杂网络中社团划分问题,文章给出了三种经典的社团划分算法,阐述了各种算法的基本原理,并对各算法进行了适当的分析和比较,为实际应用中社团划分算法的选择提供了参考。 Community structure is one of important characteristics of complex networks. For community detection in complex networks, this paper presents three typical community detection methods, describes the basic principle of each method and does some analysis and comparison among them. The purpose of all works in this paper is to supply some useful reference for community detection algorithm selection in actual applications.
作者 时京晶
出处 《电脑与信息技术》 2011年第4期42-43,79,共3页 Computer and Information Technology
关键词 复杂网络 社区结构 Laplace图谱 Kernighan-Lin算法 GN算法 complex networks community structure Laplace graph spectrum Kemighan-Lin algorithm GN algorithm
  • 相关文献

参考文献8

  • 1M. E. J. Newman.Detecting community structure in networks[J]. The European Physical Journal B . 2004 (2)
  • 2Watts DJ,Strogatz SH.Collective dynamics of ’small-world’ networks. Nature . 1998
  • 3Barabasi AL,Albert R.Emergence of scaling in random networks. Science . 1999
  • 4Kernighan BW,Lin S.An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, The . 1970
  • 5Fiedler M.Algebraic connectivity of graphs. Czechoslovak Mathematical Journal . 1973
  • 6Pothen A,Simon H,Liou K P.Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications . 1990
  • 7Girvan M,Newman MEJ.Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America . 2002
  • 8Newman MEJ,Girvan M.Finding and evaluating community structure in networks. Physical Review E Statistical, Nonlinear and Soft Matter Physics . 2004

同被引文献71

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部