摘要
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.
We have studied the transport properties of a ring-coupled quantum dot array driven by an AC magnetic field, which is connected to two leads, and we give the response of the transport current to the dynamical localization. We found that when the ratio of the magnetic flux to the total quantum dots number is a root of the zeroth order Bessel function, dynamical localization and collapse of quasi-energy occurs and importantly~ the transport current displays a dip which is the signal of dynamical localization. The dynamical localization effect is strengthened as a result of the increase of the quantum dot number, and it is weakened on account of the increase of the dots-lead hopping rate.