期刊文献+

复杂腔体本征电磁场空间分布的统计方法 被引量:11

Statistics method of eigen-electromagnetic field spatial distribution in complex cavities
下载PDF
导出
摘要 利用半经典近似方法分析了电大复杂腔体内电磁波传播的混沌特征,从而引入了3维矢量本征函数的随机平面波假设。根据电磁波传播的随机极化特征,利用统计方法推导出基于该假设本征电磁场空间分布的统计模型。应用数值方法对3维Sinai微波腔体进行模拟计算,其计算结果与统计模型符合较好。这些统计模型与腔体的具体细节特征无关。 The chaotic properties of the electromagnetic wave propagation in electrical, large complex cavities are analyzed by semi-classical approximation approach. The random plane wave hypothesis of three-dimensional eigen-function is also induced. Based on this hypothesis and the random polarization of wave, the statistical approach to the solution of eigen-electromagnetic field spatial distribution problem establishes the statistical model. Importantly, those are independent of the details of cavity. Moreo- ver, we numerically investigate statistical properties of three-dimensional Sinai microwave cavities, and numerical results are agreed well with those obtained from the statistical model.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第8期2167-2173,共7页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60971080)
关键词 复杂腔体 电磁混沌 随机平面波假设 电磁统计 complex cavities electromagnetic chaos random plane wave hypothesis electromagnetic statistics
  • 相关文献

参考文献18

  • 1Ladbury J M, Lehman T H, Koepke G H. Coupling to devices in electrically large cavities, or why classical EMC evaluation techniques are becoming obsolete[C]//IEEE International Symposium on Electromagnetic Compatibility. 2002, 2:648-655.
  • 2Hemmady S D. A Wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures[D]. MD: University of Maryland, 2006.
  • 3蔡鑫伦,黄德修,张新亮.基于全矢量模式匹配法的三维弯曲波导本征模式计算[J].物理学报,2007,56(4):2268-2274. 被引量:2
  • 4蔡佳星,仇善良,李永平,韩正甫.异型微腔本征模式分析[J].量子电子学报,2007,24(1):27-31. 被引量:1
  • 5Holland R, John S. Statistical electromagnetics[R]. AFRL-DE-PS-TR 1998-1025, 1998.
  • 6Naus H W L. Statistical electromagnetics: complex cavities[J]. IEEE Trans on Electromagnetic Compatibility, 2008, 50(2):316-324.
  • 7Lehman T H. A statistical theory of electromagnetic fields in complex cavities[G]. Interaction Notes: IN 494, 1993.
  • 8Kostas J G, Boverie B. Statistical model for a mode-stirred chamber[J].IEEE Trans on Electromagnetic Compatibility, 1991, 33(4) :366.
  • 9Price R H, Davis H T, Wenaas E P. Determination of the statistical distribution of electromagnetic-field amplitudes in complex cavities[J].Phys Rev E, 1993, 48(6) :4716-4729.
  • 10Hill D A. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) :209-217.

二级参考文献29

  • 1Vahala K J.Progress in Asymmetric Resonnant Cavities[M].Singapore:World Scientific Publishing Co.Pte.Ltd.,2004.415-502.
  • 2N(o)ckel J U,Stone A D,Chen G,et al.Directional emission from asymmetric resonant cavities[J].Opt.Lett.,1996,21(19):1609-1611.
  • 3Tureci H E,Schwefel H G L,Stone A D,et al.Modes of wave-chaotic dielectric resonators[J].Progress in Optics,2005,47:75-137.
  • 4Nockel J U,Stone A D.Ray and wave chaos in asymmetric resonant optical cavities[J].Nature,1997,385(2):45-47.
  • 5McCall S L,Levi A F J,Slusher R E,et al.Whispering-gallery mode microdisk lasers[J].Appt.Phys.Lett.,1992,60(3):289-291.
  • 6Slusher R E,Levi A F J,Mohideen U,et al.Threshold characteristics of semiconductor microdisk lasers[J].Appl.Phys.Lett.,1993,63(10):1310-1312.
  • 7Gorodetsky M L,Savchenkov A A,Ilchenko V S.Ultimate Q of optical microsphere resonators[J].Opt.Lett.,1996,21(70):453-455.
  • 8Collot L,Lefevreseguin Brune V M,Raimond J M,et al.Very high-Q whisper gallery mode resonances observed on fused-silica microspheres[J].Euro.phys.Lett.,1993,23:327-334.
  • 9Dey S,Mittra R.Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Padé approximation[J].IEEE Microwave Guided Wave Lett.,1998,12(8):415-417.
  • 10Guo Weihua,Li Weijun,Huang Yongzhen.Computation of resonant frequencies and quality factors of cavities by FDTD technique and Padé approximation[J].IEEE Microwave Guided Wave Lett.,2001,11(5):223-225.

共引文献1

同被引文献85

  • 1周璧华,陈 彬,高 成.现代战争面临的高功率电磁环境分析[J].微波学报,2002,18(1):88-92. 被引量:52
  • 2戴大富.高功率微波的发展与现状[J].真空电子技术,2004,17(5):18-24. 被引量:17
  • 3Warne L K, Lee K S H, Hudson H G, et al. Statistical properties of linear antenna impedance in an electrically large cavity[J]. IEEE Trans on Antennas and Propagation, 2003, 51(5) : 978- 992.
  • 4Zheng X, Antonsen T M Jr, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electromagnetics, 2006, 26(1) : 3- 35.
  • 5Ladbury J M, Lehman T H, Koepke G H. Coupling to devices in electrically large cavities, or why classical EMC evaluation techniques are becoming obsolete[C]//IEEE International Symposium on Electromagnetic Compatibility. 2002, 2: 848-655.
  • 6Hemmady S D. A wave-chaotic approach to predicting and measuring electromagnetic field quantities in complicated enclosures[D]. Washington: University of Maryland, 2006.
  • 7McDonald S W, Kaufman A N. Wave chaos in the stadium statistical properties of short-wave solutions of the Helmholtz equation [J]. Phys RevA, 1988, 37(8): 3067- 3086.
  • 8Stockmann H J. Chaos in microwave resonators, seminaire poincare IX[J/OL], 2010. http://www, bourbaphy. fr/stoeckmann. PDf.
  • 9Bunimovich L A. Many-dimensional nowhere dispersing billiards with chaotic behavior[J]. Physica D, 1988, 33(1/3): 58-64.
  • 10Bunimovich L A, Casati G, Guarneri I. Chaotic focusing billiards in higher dimensions[J]. Phys Rev Lett, 1996, 77(14) : 2941-2943.

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部