期刊文献+

无标度合作网络的度分布

The degree distribution of the scale-free and collaboration network model
下载PDF
导出
摘要 采用主方程方法计算了一类特殊的无标度合作网络的节点增长的动态性,证明了该网络是节点度分布符合幂律分布的无标度网络,其幂指数位于2和3之间.时间无限大时得到的度分布解的形式与BA网络的形式相似. In this paper,an evolving model aiming at a special kind of collaboration networks is proposed;the master equation is given,which its rigorous analytical solution is obtained and satisfied by degree distribution of the evolving network.It is proved that the degree distribution obeys prover-low form with the exponent adjustable between 2 and 3.The degree distribution is the similar to that of BA network at infinite time.
出处 《河北工业大学学报》 CAS 北大核心 2011年第4期56-59,共4页 Journal of Hebei University of Technology
关键词 线性择优生长 合作网络 度分布 主方程 节点 幂指数 linearly preferentially growing collaboration network model the degree distribution master equation the vertex the power exponent
  • 相关文献

参考文献7

  • 1Albert R, Barabsi A L. Statistical mechanics of complex networks [J]. Reviews of Modern physics, 2002, 74 (1): 47-97.
  • 2Newman M E J. The structure and function of complex networks [J]. SIAM Review, 2003, 45 (2) : 167-256.
  • 3Newman M E J. Scientific collaboration networks I Network construction and fundamental results [J]. Physical Review E, 2001, 64 (1) : 016131.
  • 4Newman M E J. Scientific collaboration networks II Shortest paths, weighted networks and centrality [J]. Physical Review E, 2001, 64 ( 1 ) : 016132.
  • 5Zhou Tao, Jin Ying-di, Wang Bing-Hong, et al. A general model for collaboration networks [R/OL]. (2005-02-10). http: //arxiv.org/abs/condmat/0502253.
  • 6章忠志,荣莉莉,周涛.一类无标度合作网络的演化模型[J].系统工程理论与实践,2005,25(11):55-60. 被引量:18
  • 7He Wenchen, Feng Lei, Lia Lingyun, et al. Time evolution of the degree distribution of model A of random attachment growing networks [J]. PhysicaA, 2007, 384 (2): 663-666.

二级参考文献17

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 2章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 3Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74( 1 ): 47 - 97.
  • 4Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167 - 256.
  • 5Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442.
  • 6Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286:509 - 512.
  • 7Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173 - 187.
  • 8Amaral L A N, Scala A, Barthélemy M,et al. Classes of small-world networks[J]. PNAS, 2000,97(21): 11149 - 11152.
  • 9Newman M E J. Scientific collaboration networks. Ⅰ . Network construction and fundamental results[ J]. Physical Review E, 2001,64(1): 016131.
  • 10Newman M E J. Scientific collaboration networks. Ⅱ . Shortest paths, weighted networks, and centrality[J]. Physical Review E,2001,64(1): 016132.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部