期刊文献+

互补约束问题的部分增广Lagrange罚函数方法及其收敛性分析

CONVERGENCE ANALYSIS OF A PARTIAL AUGMENTEDLAGRANGIAN PENALTY METHOD FOR MPCC
下载PDF
导出
摘要 本文受文献[3]的启发,对一般互补约束问题,提出了一种部分增广Lagrange罚函数法,该方法仅把较难处理的互补约束条件作了惩罚对象。通过改进的证明方法,比文献[3]所采用条件更弱的条件下,即假设在相应的罚问题对应的拉格朗日函数的Hesse矩阵在其切平面上关于α下有界的条件下,得到了算法所产生的迭代序列收敛到原互补约束问题的一个B-稳定点的收敛性结果。 In the paper,enlightened from the reference[3],a partial augmented Lagrangian penalty method for MPCC was proposed.The method only incorporatedthe complementarity constraints into the objective function of the partial augmented Lagrangian penalty problem.Under the condition that the Hessian matrices of the Lagrangian function of the partial augmented Lagrangian penalty problem is bounded below with constant on the corresponding tangent space,the convergent result that the limit point of the sequence of iterates generated by the algorithm is a B-stationary point of the original MPCC was proved.Obviously,the assumption is weaker than that used in paper[3].
出处 《内蒙古工业大学学报(自然科学版)》 2011年第2期86-93,共8页 Journal of Inner Mongolia University of Technology:Natural Science Edition
基金 内蒙古自然科学基金项目(200607010115) 内蒙古科技大学数理与生物工程学院院内基金项目(2009)
关键词 互补约束问题 部分增广Lagrange罚函数方法 稳定点 收敛性 Mathematical programs with complementarity constraints Partial augmented Lagrangian penalty method stationary point convergence.
  • 相关文献

参考文献12

  • 1M. Fukushima and J. S. Pang. Convergence of a Smoothing Continuation Method for Mathematical Programs with Complementarity Constraints in M. Threra and R. Tichatsehke(eds) [J]. Illposed VariationalPrograms and Regularia- tion Techniques, Lecture Notes in Economics and Mathematical Systems. 1999,477: 105-116.
  • 2H. Z. Luo, X. L. Sun, Y. F. Xu, H. X. Wu. On the Convergence Properties of Modified AugmentedLagrangian Methods for Mathematical programming with Complementarity Constraints [J]. Journal of Global Optimization. 2010, 46:217 -232.
  • 3X. X. Huang, X. Q. Yang and K. L. Teo. Partial Augmented Lagrangian Method and Mathematical Programs with Complementarity Constraints [J-. Journal of Global Optimization. 2006, 35:- 235-254.
  • 4X. Q: Yang,X. X. Huang. Convergence Analysis of an Augmented Lagrangian Method and Mathematical Programs with Complementarity Constraints[J].nonlinear analysis, 2005, 63:e2247-e2256.
  • 5X. X. Huang, X. Q. Yang and D. L. Zhu. A Sequential Smooth Penalization Approach to Mathematical Programs with Complementarity Constraints, Manuscript, Department of Applied Mathematics, HongKongPolytecnie University, HongKong, 2001.
  • 6X. M. Hu and D. Ralph. Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints [J]. Journal of Optimization and Application. 2004, 123(2): 365-390.
  • 7陈宝林.最优化理论与算法[M].第三版,北京:清华大学出版社,2006;3.94-413.
  • 8G. H. Lin and M. Fukushima. A Modified Relaxation Scheme for Mathematical Programs with Complementarity Constraints [J]. Annals of Operations Research. 2005, 133(1-4) : 63-84.
  • 9刘兵.一般互补约束问题的两种松驰规划算法[D].呼和浩特:内蒙古工业大学,2006:1-52.
  • 10李飞.互补约束问优化问题的一种乘子积极集算法[D].呼和浩特:内蒙古大学,2007:1-43.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部