期刊文献+

FLIGHT DELAY STATE-SPACE MODEL BASED ON GENETIC EM ALGORITHM 被引量:2

基于遗传EM算法的航班延误状态空间模型(英文)
下载PDF
导出
摘要 Flight delay prediction remains an important research topic due to dynamic nature in flight operation and numerous delay factors.Dynamic data-driven application system in the control area can provide a solution to this problem.However,in order to apply the approach,a state-space flight delay model needs to be established to represent the relationship among system states,as well as the relationship between system states and input/output variables.Based on the analysis of delay event sequence in a single flight,a state-space mixture model is established and input variables in the model are studied.Case study is also carried out on historical flight delay data.In addition,the genetic expectation-maximization(EM)algorithm is used to obtain the global optimal estimates of parameters in the mixture model,and results fit the historical data.At last,the model is validated in Kolmogorov-Smirnov tests.Results show that the model has reasonable goodness of fitting the data,and the search performance of traditional EM algorithm can be improved by using the genetic algorithm. 航班运行过程的高度动态性和随机性,航班延误因素的复杂性和不确定性导致航班延误实时预测成为难题。控制领域的动态数据驱动方法为该问题提供了一种解决方案。然而,要想运用动态数据驱动方法,首先必须建立航班延误状态空间模型来表示系统状态之间、状态与系统输入输出之间的关系。本文对单机延误事件序列进行了分析,创建了一种航班延误状态空间模型,并对其中的输入控制量进行了重点建模。在历史航班运行数据集上,采用遗传EM算法对模型参数进行了极大似然估计,并同时验证了遗传EM算法在优化参数估计和提高计算效率方面的优势。最后,采用Kol-mogorov-Smirnov方法对模型实例进行了假设检验,检验结果表明,所选模型具有较好的拟合优度。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期276-281,共6页 南京航空航天大学学报(英文版)
基金 Supported by the High Technology Research and Development Programme of China(2006AA12A106)~~
关键词 FLIGHT DELAY predictions dynamic data-driven application system genetic EM algorithm 航班 延误 预测 动态数据驱动应用系统 遗传EM算法
  • 相关文献

参考文献10

  • 1Hsu C L,Hsu C C,Li H C.Flight delay propagation,allowing for behavioral response. International Journal of Critical Infrastructures . 2007
  • 2Ding Jianli,Yu Yuecheng,Wang Jiandong.A model for predicting flight delay and delay propagation based on parallel cellular automata. ISECS In-ternational Colloquium on Computing,Communica-tion,Control and Management . 2009
  • 3AhmadBeygi S,Cohn A,Lapp M.Decreasing airline delay propagation by re-allocating scheduled slack. IIE Transactions . 2010
  • 4Tu Y F,Ball M,Jank W.Estimating flight departure delay distributions—A statistical approach with long-term trend and short-term pattern. Journal of the American Statistical Association . 2008
  • 5Pernkopf F,Bouchaffra D.Genetic-based EM algo-rithm for learning gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intel-ligence . 2005
  • 6ABDEL-ATY M,LEE C,BAI Yu-qiong,et al.Detecting periodic patterns of arrival delay. Journal of Air Trans-port Management . 2007
  • 7Khaled F.Abdelghany,Sharmila S.Shah,Sidhartha Raina,et al.A Model for Projecting Flight Delays during Irregular Operation Conditions. Journal of Air Transport Management . 2004
  • 8Paul T R Wang,Lisa A Schaefer,Leonard A Wojcik.Flight Connections And Their Impacts On Delay Propagation. Digital Avionics Systems Conference . 2003
  • 9Reeves RD,Baker AJM.Metal-accumulating plants. Phytoremediation of toxic metals: using plants to clean up the environment . 2000
  • 10Dempster A P,Laird N M,Rubin D B.Maximum likelihood estimation from incomplete data via EM algorithm. Journal of the Royal Statistical Society Series B Statistical Methodology . 1977

同被引文献34

  • 1Burgard W, Moors M, Fox D, et al. Collaborative multi-robot exploration [C] II IEEE International Conference on Robotics and Automation. [s. l.]:2000, 1: 476-481.
  • 2Nicosia J. Decentralized cooperative navigation for spacecraft[C] II IEEE Aerospace Conference. [S.l.]: IEEE, 2007: 1-6.
  • 3Roumeliotis S I, Bekey G A. Distributed multirobot localization[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5) :781-795.
  • 4Mu Hua. Decentralized algorithms of cooperative navigation for mobile platform[D]. Changsha . National University of Defense Technology, 2010.
  • 5Trawny N, Roumeliotis S I, Giannakis G B. Cooperative multi-robot localization under communication constraints[C]//IEEE International Conference on Robotics and Automation. [s. l.]: IEEE, 2009: 4394-4400.
  • 6Wang Z D, Yang F W, Daniel W C Ho, et al. Robust H= filtering for stochastic time-delay systems with missing measurements [J]. IEEE Transactions on Signal Processing, 2006, 54 (7) :2579-2587.
  • 7Lu X, Xie L H, Zhang H S, et al. Robust Kalman filtering for discrete-time systems with measurement delay [J]. IEEE Transactions on Circuits and Systems, 2007,54(6): 522-526.
  • 8Larsen T D, Andersen N A, Ravn 0, et al. Incorporation of time delayed measurements in a discretetime Kalman filter[C]//37th IEEE Conference on Decision and Control. Tampa, USA: [s. n.], 1998, 4: 3972-3977.
  • 9Lu X, Zhang H S, Wang W, et al. Kalman filtering for multiple time-delay systems [J]. Autornatica , 2005,41(8):1455-1461.
  • 10Maczka D K, Gadre A S, Stilwell D J. Implementation of a cooperative navigation algorithm on a platoon of autonomous underwater vehicles[C]//IEEE International Conference on OCEANS. [s. l.]: IEEE,2007,1-6.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部