期刊文献+

一种新的SMC-PHD滤波的多目标状态估计方法 被引量:6

A Novel Multi-Target State Estimation Method for SMC-PHD Filter
下载PDF
导出
摘要 针对现有的应用于多目标跟踪概率假设密度粒子滤波器的目标状态估计方法不能很好地解决目标密度较高情况下的多目标状态估计问题,提出了一种新的基于粒子标签的多目标状态估计方法。该方法利用附加在每个粒子上的身份标签将粒子分为不同的粒子群,粒子群的个数与概率假设密度粒子滤波器的目标估计个数相同。随后根据粒子与最近量测的似然函数估计目标的运动状态,使得粒子概率假设密度滤波器在目标密集的情况下仍能准确地估计出目标状态。仿真试验表明,论文所提方法在目标密度较大情况下能够较好地估计出多目标状态,并提高了目标关联的准确性。 For the problem that current state estimation methods used in multi-target tracking Probability Hypothesis Density(PHD) particle filter exhibit poor performance in the scene of dense multi-target tracking,a novel multi-target state estimation algorithm is presented in this paper.The algorithm utilizes the labels which assign to every particle for classify all the particles into different clusters,makes the number of clusters equal to the estimated target number,and exploits the likelihood function between latest measurements and particles to estimate target's state.The simulation results indicate that the proposed method can accurately estimate target's state in dense multi-target tracking and improve the performance of estimate-to-track association.
出处 《宇航学报》 EI CAS CSCD 北大核心 2011年第10期2187-2193,共7页 Journal of Astronautics
关键词 随机有限集 SMC-PHD滤波 多目标跟踪 状态估计 轨迹关联 Random finite set SMC-PHD filter Multi-target tracking State estimation Track association
  • 相关文献

参考文献17

  • 1Mahler R. Multi-target Bayes filtering via first-order multi-target moments[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4) : 1152 - 1178.
  • 2Goodman I, Mahler R, Nguyen H. Mathematics of data fusion [ M]. Boston: Kluwer Academic Publishers, 1997.
  • 3Mahlcr R. Random set theory for target tracking and identification [ M]. Boca Raton FL: CRC Press, 2002.
  • 4Vo B N, Singh S, Doucet A. Sequential monte methods for muhi-target fihering with random finite sets [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41 (4): 1224 -1245.
  • 5Vo B N, Singh S, Doucet A. Sequential Monte Carlo implementation of the PHD filter for multi-target tracking[C]. The 6th International Conference on Information Fusion, Cairns, Queensland, Australia, July 8 - 11, 2003.
  • 6Zajic T, Ronald P S. Mahler H. Particle-systems implementation of the PHD multitarget tracking filter E C ]. Processing of SPIE, Orlando, FL, USA, April 21, 2003.
  • 7Sidenbladh H. Multi-target particle filtering for the probability hypothesis density [ C ]. Processing of 6th International Conference on Information Fusion, Cairns, Australia, July 8- 11,2003.
  • 8Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1) : 87 -.
  • 9Clark D E. Multiple target tracking with the probability hypothesis density filter [ D ]. Edinburgh, U. K: Department of Electrical Engineering, Heriot-Watt University, 2006.
  • 10Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter [ J ]. IEEE Transanetions on Aerospace and Eleetronies System, 2007, 43(4): 1441 -1453.

同被引文献114

  • 1何伍福,王国宏,刘杰.海杂波环境中基于混沌的目标检测[J].系统工程与电子技术,2005,27(6):1016-1020. 被引量:6
  • 2ZHOU WenHui,LI Lin,CHEN GuoHai,YU AnXi.Optimality analysis of one-step OOSM filtering algorithms in target tracking[J].Science in China(Series F),2007,50(2):170-187. 被引量:12
  • 3BAR-SHALOM Y, FORTMANN T E. Tracking and Data Association [M]. New York: Academic Press, 1988.
  • 4DAVID L H, JAMES L. Handbook of Multisensor Data Fusion: 2nd edition [M]. New York: CRC Press, 2008.
  • 5Mahler R P S. Statistical Multisource Multitarget Information Fusion [M]. Boston: Artech House Publishers, 2007.
  • 6MAHLER R, ZAJIC T. Multitarget filtering using a multitarget first-order moment statistic [J]. Proceedings of SPIE(S0277-786X), 2001, 4380(2001): 184-195.
  • 7MAHLER R. Multitarget Bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2003, 39(4): 1152-1178.
  • 8ZAJIC T, MAHLER R. Particle-systems implementation of the PHD multi-target tracking filter [J]. Proceedings of SPIE(S0277-786X), 2003, 5096: 291-299.
  • 9VO B N, SINGH S, DOUEET A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2005, 41(4): 1224-1245.
  • 10VO B N, MAW. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Processing(S1053-587X), 2006, 54(11): 4091-4104.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部