期刊文献+

EXISTENCE OF PERIODIC SOLUTIONS FOR A DIFFERENTIAL INCLUSION SYSTEMS INVOLVING THE p(t)-LAPLACIAN 被引量:4

EXISTENCE OF PERIODIC SOLUTIONS FOR A DIFFERENTIAL INCLUSION SYSTEMS INVOLVING THE p(t)-LAPLACIAN
下载PDF
导出
摘要 We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic. We study a nonlinear periodic problem driven by the p(t)-Laplacian and having a nonsmooth potential (hemivariational inequalities). Using a variational method based on nonsmooth critical point theory for locally Lipschitz functions, we first prove the existence of at least two nontrivial solutions under the generalized subquadratic and then establish the existence of at least one nontrivial solution under the generalized superquadratic.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1786-1802,共17页 数学物理学报(B辑英文版)
基金 supported by the National Science Foundation of China (11001063, 10971043) the Fundamental Research Funds for the Central Universities (HEUCF 20111134) China Postdoctoral Science Foundation Funded Project (20110491032) Heilongjiang Provincial Science Foundation for Distinguished Young Scholars (JC200810) Program of Excellent Team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang Province (A200803)
关键词 p(t)-Laplacian periodic solution variable exponent Sobolev space minimax principle generalized subdifferential local linking reduction method p(t)-Laplacian periodic solution variable exponent Sobolev space minimax principle generalized subdifferential local linking reduction method
  • 相关文献

参考文献1

二级参考文献9

  • 1Baxtolo P, Benci V, Fortunato D. Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity. Nonlinear Anal, 1983, 7:981-1012.
  • 2Cordaro G. Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian systems. Abstr Appl Anal, 2003, 18:1037 -045.
  • 3Gasinski L, Papageorgiou N S. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Boca Raton, FL: Chapman and Hall/CRC Press, 2005.
  • 4Mawhin J. Forced second order conservation system with periodic nonlinearity. Ann Inst H Poincare Anal Non Lineaire, 1989, 6(Suppl): 415-434.
  • 5Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Applied Mathematical Sciences, Vol 74. New York: Springer-Verlag, 1989.
  • 6Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31:157-184.
  • 7Showalter R E. Hilbert Space Methods for Partial Differential Equations. Monographs and Studies in Mathematics, Vol 1. London: Pitman, 1977.
  • 8Tang C L, Wu X P. Periodic solutions for second order systems with not uniformly coercive potential. J Math Anal Appl, 2001, 259:386-397.
  • 9Tang C L, Wu X P. Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems. J Math Anal Appl, 2002, 275:870-882.

同被引文献7

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部