期刊文献+

直接甲酸燃料电池炭载Pd阳极催化剂的稳定性 被引量:5

Stability of Carbon Supported Pd/C Catalyst in Direct Formic Acid Fuel Cell
下载PDF
导出
摘要 用X射线衍射和电化学方法研究了在甲酸溶液中浸泡一段时间后的Pd/C催化剂的结构和电催化性能,发现在甲酸溶液中浸泡15 d后,Pd/C催化剂中Pd粒子的相对结晶度由1.73增加到3.34,平均粒径由4.4 nm降低到1.8 nm,对甲酸氧化的电催化活性和稳定性降低,甲酸氧化的峰电流密度由9.3 mA/cm2降低到6.7 mA/cm2.这可能是由Pd/C催化剂中的Pd在甲酸中会有一定的溶解和Pd/C催化剂能催化分解甲酸引起的. In order to understand the reason for the poor electrocatalytic stability of the Pd/C catalyst for formic acid oxidation, the changes in the structure and the electrocatalytic performance of the Pd/C catalyst after dipping in the formic acid solution for a certain time were investigated using X-ray diffraction spectroscopy and electrochemical methods. It is found that the relative crystallinity of the Pd particles of Pd/C catalyst increases from 1.73 to 3.34 and the average size decreases from 4. 4 nm to 1.8 nm after dipping in formic acid solution for 15 d. The electrocatalytic activity and stability of the Pd/C catalyst for formic acid oxidation decrease. The peak current density of formic acid oxidation decreases from 9.3 mA/cm2 to 6.7 mA/cm2. It may be due to the certain dissolution of Pd in the Pd/C catalyst and the catalytic decomposition of formic acid at the Pd/C catalyst. This result may supply a new approach for exploring the reason for the poor electrocatalytic stability of the Pd/C catalyst for the formic acid oxidation.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2011年第11期2626-2629,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20873065 21073094)资助
关键词 炭载Pd催化剂 甲酸氧化 甲酸分解 甲酸浸泡 直接甲酸燃料电池 Carbon supported Pd catalyst Formic acid oxidation Formic acid decomposition Dipping in formic acid Direct formic acid fuel cell
  • 相关文献

参考文献22

  • 1Rice C. , Ha S. , Masel R. I. , Waszczuk P. , Wieckowski A. , Barnard T.. J. Power Sources[J] , 2002, 111:83-89.
  • 2Rhee Y. W. , Ha S. , Rice C. , Masel R. I.. J. Power Sources[J] , 2003, 117:35-38.
  • 3YUANQing—Yun(袁青云),TANGYa—Wen(唐亚文),ZHOUYi-Ming(周益明),LIUChang-Peng(刘长鹏),XINGWei(邢巍),LuTian-Hong(陆天虹).ChineseJ.Appl.Chem.(应用化学)[J],2005,22:929-932.
  • 4Zhu Y. M. , Zakia K. , Masel R. I.. J. Power Sources[J], 2005, 139:15-20.
  • 5Zhou W. P. , Lewera A. , Larsen R. , Masel R. I. , Bagus P. S. , Wieckowski A.. J. Phys. Chem. B[J] , 2006, 110:13393--13398.
  • 6Zhang L. L. , Tang Y. W. , Bao J. C. , Lu T. H. , Li C.. J. Power Sources[J] , 2006, 162:177--179.
  • 7Zhang L. L., Lu T. H., Bao J. C., Tang Y. W., Li C.. Electrochem. Comm. [J], 2006, 8:1625--1627.
  • 8Capon A., Parsons R.. Electroanal. Chem. Inteffacial Eletronanal. Chem. [J], 1973, 44:239--254.
  • 9Wang R. F. , Liao S. J. , Ji S.. J. Power Sources[J] 2008, 180:205--208.
  • 10Wang X. , Tang Y. W. , Gao Y. , Lu T. H.. J. Power Sources[J], 2008, 175:784--788.

同被引文献66

  • 1Antolini E.. Energy Environ. Sci. [J], 2009, 2:915-931.
  • 2HAS., Dunbar Z., MaselR. I.. J. Power Sources[J], 2006, 158:129-136.
  • 3Liu Z. L. , Hong L. , Tham M. P. , Lim T. H. , Jiang H. X.. J. Power Sources[J], 2006, 161:831-835.
  • 4Zhang Z. H. , Huang Y. J. , Ge J. J. , Liu C. P. , Lu T. H. , Xing W.. Electrochem. Commun. [J], 2008, 10:1113-1116.
  • 5ZhouW. J., LeeJ. Y.. J. Phys. Chem. C[J], 2008, 112:3789-3793.
  • 6Li H. Q. , Sun G. Q. , Jiang Q. A. , Zhu M. Y. , Sun S. , Xin Q.. Electrochem. Commun. [J] , 2007, 9:1410-1415.
  • 7Liu Y. , Wang L. W. , Wang G. , Deng C. , Wu B. , Gao Y.. J. Phys. Chem. C[J], 2010, 114:21417-21422.
  • 8LiuB., LiH. Y., DieL., ZhangX. H., FanZ., ChenJ. H.. J. Power Sources[J], 2009, 186:62-66.
  • 9Wang X. , Tang Y. W. , Gao Y. , Lu T. H.. J. Power Sources[J] , 2008, 175:784-788.
  • 10Morales-Acosta D. , Ledesma-Garcia J. , Godinez L. A. , Rodriguez H. G. , Alvarez-Contreras L. , Arriaga L. G.. J. Power Sources [ J ], 2010, 195 : 461-d65.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部