期刊文献+

A study on remote sensing models of sea ice thickness by microwave radiometry

A study on remote sensing models of sea ice thickness by microwave radiometry
下载PDF
导出
摘要 Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable to first-year sea ice condition of the northern part of China seas. Comparison with in situ data indicates that for microwave wavelength of 10 cm, the coherent model gives a quite good fit result for the thickness of sea ice less than 20 cm, and the incoherent model also works well for thickness within 20 to 40 cm. Based on three theoretical models, the inversion soft ware from microwave remote sensing data for calculating the thickness of sea ice can be set up. The relative complex dielectrical constants of different types of sea ice in the Liaodong Gulf calculated by using these theoretical models and measurement data are given in this paper. The extent of their values is (0. 5-4. 0)-j(0. 07~0. 19). Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable to first-year sea ice condition of the northern part of China seas. Comparison with in situ data indicates that for microwave wavelength of 10 cm, the coherent model gives a quite good fit result for the thickness of sea ice less than 20 cm, and the incoherent model also works well for thickness within 20 to 40 cm. Based on three theoretical models, the inversion soft ware from microwave remote sensing data for calculating the thickness of sea ice can be set up. The relative complex dielectrical constants of different types of sea ice in the Liaodong Gulf calculated by using these theoretical models and measurement data are given in this paper. The extent of their values is (0. 5-4. 0)-j(0. 07~0. 19).
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第2期197-206,共10页 海洋学报(英文版)
基金 The project supported by National Natural Science Fundation of China
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部